Solution

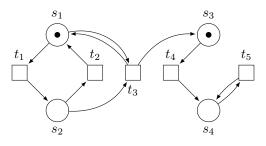
Petri nets – Homework 6

Discussed on Thursday 18th June, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 6.1 Siphons and traps

- (a) Find all the proper siphons and traps in the Petri net below.
- (b) Check if each proper siphon contains an initially marked trap.



Solution:

(a) A set R of places is a siphon if ${}^{\bullet}R \subseteq R^{\bullet}$. This is equivalent to requiring that every transition that puts a token into R also takes a token from R. This constraint is expressed by requiring that for all transitions t, we have $(\bigvee_{s \in t^{\bullet}} s \in R) \implies (\bigvee_{s \in \bullet t} s \in R)$. For this net, the constraints are as follows, with the added constraint for a proper siphon:

$$\begin{array}{lll} t_1: & s_2 \in R \implies s_1 \in R \\ t_2: & s_1 \in R \implies s_2 \in R \\ t_3: & s_1 \in R \lor s_3 \in R \implies s_1 \in R \lor s_2 \in R \\ t_4: & s_4 \in R \implies s_3 \in R \\ t_5: & s_4 \in R \implies s_4 \in R \\ & s_1 \in R \lor s_2 \in R \lor s_3 \in R \lor s_4 \in R \end{array}$$

By enumerating the solutions, we obtain the set of siphons $\{\{s_1, s_2\}, \{s_1, s_2, s_3\}, \{s_1, s_2, s_3, s_4\}\}$.

Similarly, a set R of places is a trap if $R^{\bullet} \subseteq {}^{\bullet}R$. This is equivalent to requiring that every transition that takes a token from R also puts a token into R. This constraint is expressed by requiring that for all transitions t, we have $(\bigvee_{s \in \bullet} s \in R) \implies (\bigvee_{s \in t^{\bullet}} s \in R)$. For this net, the constraints are as follows, with the added constraint for a proper trap:

 $\begin{array}{ll} t_1: & s_1 \in R \implies s_2 \in R \\ t_2: & s_2 \in R \implies s_1 \in R \\ t_3: & s_1 \in R \lor s_2 \in R \implies s_1 \in R \lor s_3 \in R \\ t_4: & s_3 \in R \implies s_4 \in R \\ t_5: & s_4 \in R \implies s_4 \in R \\ & s_1 \in R \lor s_2 \in R \lor s_3 \in R \lor s_4 \in R \end{array}$

By enumerating the solutions, we obtain the set of traps $\{\{s_1, s_2\}, \{s_4\}, \{s_3, s_4\}, \{s_1, s_2, s_4\}, \{s_1, s_2, s_3, s_4\}\}$.

(b) The trap $\{s_1, s_2\}$ is initially marked and contained in every proper siphon. Therefore the net is deadlock-free.

<u>Exercise 6.2</u> Algorithm for the largest siphon

Recall the following algorithm for computing the largest siphon Q contained in a given set R of places:

Input: A net N = (S, T, F) and $R \subseteq S$. Output: The largest siphon $Q \subseteq R$. Initialization: Q := R. begin while there are $s \in Q$ and $t \in {}^{\bullet}s$ such that $t \notin Q^{\bullet}$ do $Q := Q \setminus \{s\}$ endwhile end

Show that the algorithm is correct by showing

- (a) that the algorithm terminates, and
- (b) that after termination, Q is the largest siphon contained in R.

Solution:

- (a) In every iteration of the while loop, a place s is removed from Q. Q contains only finitely many places initially, therefore the while loop and the algorithm terminates.
- (b) Let Q' be the largest siphon contained in R. First we show that $Q \subseteq Q'$. Let $s \in Q$. Then for all $t \in \bullet s$, we have $t \in Q^{\bullet}$, therefore Q is a siphon. As Q' contains all siphons in $R, Q \subseteq Q'$.

Now let Q_0, Q_1, \ldots, Q_n be the intermediate sets in the algorithm, with $Q_0 = R$ and $Q_n = Q$. We show that in each step i, we have $Q' \subseteq Q_i$.

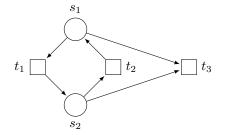
Initially, with i = 0, we have $Q' \subseteq R = Q_0$. Now assume that $Q' \subseteq Q_i$ and we execute the body of the while loop in step i. Then there is $s \in Q_i$ and $t \in {}^{\bullet}s$ such that $t \notin Q_i^{\bullet}$. As $Q'^{\bullet} \subseteq Q_i^{\bullet}$, we also have $t \notin Q'^{\bullet}$ and therefore $s \notin Q'$. Thus $Q' \subseteq Q_{i+1} = Q_i \setminus \{s\}$.

<u>Exercise 6.3</u> Minimal siphons

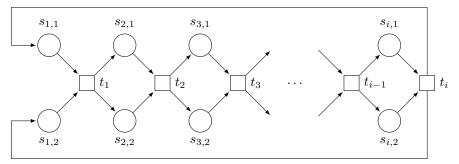
- (a) Exhibit a net having a minimal siphon R and a transition t such that $|{}^{\bullet}t \cap R| \geq 2$.
- (b) Construct for each $i \in \mathbb{N}$ a net with at most 2i places and at least 2^i minimal siphons.

Solution:

(a) In the Petri net below, $R = \{s_1, s_2\}$ is a minimal siphon, as neither $\{s_1\}$ nor $\{s_2\}$ are a siphon on their own, and with $t = t_3$, we have $|\bullet t_3 \cap \{s_1, s_2\}| = 2$.



(b) For a given *i*, the Petri net is indicated below. It has 2i places and for each $k \in \{1, 2\}^i$, the set $R_k = \{s_{1,k_1}, s_{2,k_2}, \ldots, s_{i,k_i}\}$ is a siphon, as ${}^{\bullet}R_k = R_k {}^{\bullet} = T$, and is minimal, so there are 2^i minimal siphons.



<u>Exercise 6.4</u> Characterization of traps

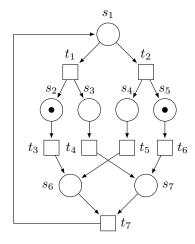
Show the following proposition, a characterization of traps by their fundamental property.

Proposition 6.4.1. Let N be a net and R a set of places of N. R is a trap of N iff for all markings M of N, if M(R) > 0, then M'(R) > 0 for all $M' \in [M]$.

Solution: If R is a trap, the property follows from the fundamental property of traps. If R is not a trap, then there is a $s \in R$ and a $t \in s^{\bullet}$ such that $t \notin {}^{\bullet}R$. Define the marking M with M(s) = 1 if $s \in {}^{\bullet}t$ and M(s) = 0 otherwise. We have M(R) > 0. Further, t is a enabled at M, and we reach $M \xrightarrow{t} M'$ with M'(R) = 0, as no $s \in t^{\bullet}$ is in R. This proves the property.

<u>Exercise 6.5</u> Using traps to show non-reachability

Consider the Petri net below. We want to show that M_0 is not reachable from some reachable marking M (thus showing that M_0 is not a home marking and the net is not cyclic).



- (a) Find a trap R not marked at M_0 .
- (b) Find a marking M reachable from M_0 that marks R.
- (c) Use R to construct a constraint over the markings reachable from M and show that M_0 is not reachable from M.

Solution:

- (a) The trap $R = \{s_1, s_3, s_4, s_6, s_7\}$ is not marked at M_0 .
- (b) By firing t_3 at M_0 , we reach the marking M = (0, 0, 0, 0, 1, 1, 0) which marks s_6 and therefore R.
- (c) As M(R) > 0, all markings $M' \in [M]$ need to satisfy M'(R) > 0. Initially, we have $M_0(R) = 0$, so M_0 can not be reachable from M.

<u>Exercise 6.6</u> Linear inequation net

Consider the following set, defined by a linear inequation.

$$X = \{(x_1, x_2, x_3, x_4) \in \mathbb{N}^4 \mid 2x_1 + 5x_2 \le 3x_3 + 4x_4\}$$

Give a Petri net (N, M_0) (with or without weighted arcs) containing four designated places x_1, x_2, x_3 and x_4 (and possibly other places) such that $\{(M(x_1), M(x_2), M(x_3), M(x_4)) \mid M \in [M_0)\} = X$, i.e., the reachable markings represent the set X.

Solution: The Petri net below has the places x_1 , x_2 , x_3 and x_4 for keeping track of the values and the place s, which keeps track of the difference $(3x_3 + 4x_4) - (2x_1 + 5x_2)$ between the right-hand side and the left-hand side of the inequation. The transitions t_1 to t_4 increase each x_i by one and add or remove the appropriate amount to s, depending on whether x_i appears on the left-hand side or right-hand side of the inequation.

