Solution

Petri nets - Homework 6

Discussed on Thursday $18^{\text {th }}$ June, 2015.
For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 6.1 Siphons and traps

(a) Find all the proper siphons and traps in the Petri net below.
(b) Check if each proper siphon contains an initially marked trap.

Solution:

(a) A set R of places is a siphon if ${ }^{\bullet} R \subseteq R^{\bullet}$. This is equivalent to requiring that every transition that puts a token into R also takes a token from R. This constraint is expressed by requiring that for all transitions t, we have $\left(\bigvee_{s \in t^{\bullet}} s \in R\right) \Longrightarrow$ $\left(\bigvee_{s \in \bullet} s \in R\right)$. For this net, the constraints are as follows, with the added constraint for a proper siphon:

$$
\begin{array}{ll}
t_{1}: & s_{2} \in R \Longrightarrow s_{1} \in R \\
t_{2}: & s_{1} \in R \Longrightarrow s_{2} \in R \\
t_{3}: & s_{1} \in R \vee s_{3} \in R \Longrightarrow s_{1} \in R \vee s_{2} \in R \\
t_{4}: & s_{4} \in R \Longrightarrow s_{3} \in R \\
t_{5}: & s_{4} \in R \Longrightarrow s_{4} \in R \\
& s_{1} \in R \vee s_{2} \in R \vee s_{3} \in R \vee s_{4} \in R
\end{array}
$$

By enumerating the solutions, we obtain the set of siphons $\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}\right\}$.
Similarly, a set R of places is a trap if $R^{\bullet} \subseteq \bullet R$. This is equivalent to requiring that every transition that takes a token from R also puts a token into R. This constraint is expressed by requiring that for all transitions t, we have $\left(\bigvee_{s \in \bullet} s \in R\right) \Longrightarrow\left(\bigvee_{s \in t} \cdot s \in R\right)$. For this net, the constraints are as follows, with the added constraint for a proper trap:

$$
\begin{array}{ll}
t_{1}: & s_{1} \in R \Longrightarrow s_{2} \in R \\
t_{2}: & s_{2} \in R \Longrightarrow s_{1} \in R \\
t_{3}: & s_{1} \in R \vee s_{2} \in R \Longrightarrow s_{1} \in R \vee s_{3} \in R \\
t_{4}: & s_{3} \in R \Longrightarrow s_{4} \in R \\
t_{5}: & s_{4} \in R \Longrightarrow s_{4} \in R \\
& s_{1} \in R \vee s_{2} \in R \vee s_{3} \in R \vee s_{4} \in R
\end{array}
$$

By enumerating the solutions, we obtain the set of traps $\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{4}\right\},\left\{s_{3}, s_{4}\right\},\left\{s_{1}, s_{2}, s_{4}\right\},\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}\right\}$.
(b) The $\operatorname{trap}\left\{s_{1}, s_{2}\right\}$ is initially marked and contained in every proper siphon. Therefore the net is deadlock-free.

Exercise 6.2

Recall the following algorithm for computing the largest siphon Q contained in a given set R of places:
Input: A net $N=(S, T, F)$ and $R \subseteq S$.
Output: The largest siphon $Q \subseteq R$.
Initialization: $Q:=R$.
begin
while there are $s \in Q$ and $t \in{ }^{\bullet} s$ such that $t \notin Q^{\bullet}$ do

$$
Q:=Q \backslash\{s\}
$$

endwhile
end
Show that the algorithm is correct by showing
(a) that the algorithm terminates, and
(b) that after termination, Q is the largest siphon contained in R.

Solution:

(a) In every iteration of the while loop, a place s is removed from $Q . Q$ contains only finitely many places initially, therefore the while loop and the algorithm terminates.
(b) Let Q^{\prime} be the largest siphon contained in R. First we show that $Q \subseteq Q^{\prime}$. Let $s \in Q$. Then for all $t \in \bullet s$, we have $t \in Q^{\bullet}$, therefore Q is a siphon. As Q^{\prime} contains all siphons in $R, Q \subseteq Q^{\prime}$.

Now let $Q_{0}, Q_{1}, \ldots, Q_{n}$ be the intermediate sets in the algorithm, with $Q_{0}=R$ and $Q_{n}=Q$. We show that in each step i, we have $Q^{\prime} \subseteq Q_{i}$.

Initially, with $i=0$, we have $Q^{\prime} \subseteq R=Q_{0}$. Now assume that $Q^{\prime} \subseteq Q_{i}$ and we execute the body of the while loop in step i. Then there is $s \in Q_{i}$ and $t \in{ }^{\bullet} s$ such that $t \notin Q_{i}^{\bullet}$. As $Q^{\prime \bullet} \subseteq Q_{i}^{\bullet}$, we also have $t \notin Q^{\prime \bullet}$ and therefore $s \notin Q^{\prime}$. Thus $Q^{\prime} \subseteq Q_{i+1}=Q_{i} \backslash\{s\}$.

Exercise 6.3 Minimal siphons

(a) Exhibit a net having a minimal siphon R and a transition t such that $\left|{ }^{\bullet} t \cap R\right| \geq 2$.
(b) Construct for each $i \in \mathbb{N}$ a net with at most $2 i$ places and at least 2^{i} minimal siphons.

Solution:

(a) In the Petri net below, $R=\left\{s_{1}, s_{2}\right\}$ is a minimal siphon, as neither $\left\{s_{1}\right\}$ nor $\left\{s_{2}\right\}$ are a siphon on their own, and with $t=t_{3}$, we have $\left.\right|^{\bullet} t_{3} \cap\left\{s_{1}, s_{2}\right\} \mid=2$.

(b) For a given i, the Petri net is indicated below. It has $2 i$ places and for each $k \in\{1,2\}^{i}$, the set $R_{k}=\left\{s_{1, k_{1}}, s_{2, k_{2}}, \ldots, s_{i, k_{i}}\right\}$ is a siphon, as ${ }^{\bullet} R_{k}=R_{k}^{\bullet \bullet}=T$, and is minimal, so there are 2^{i} minimal siphons.

Exercise 6.4 Characterization of traps

Show the following proposition, a characterization of traps by their fundamental property.
Proposition 6.4.1. Let N be a net and R a set of places of $N . R$ is a trap of N iff for all markings M of N, if $M(R)>0$, then $M^{\prime}(R)>0$ for all $M^{\prime} \in[M\rangle$.

Solution: If R is a trap, the property follows from the fundamental property of traps. If R is not a trap, then there is a $s \in R$ and a $t \in s^{\bullet}$ such that $t \notin \bullet R$. Define the marking M with $M(s)=1$ if $s \in \bullet t$ and $M(s)=0$ otherwise. We have $M(R)>0$. Further, t is a enabled at M, and we reach $M \xrightarrow{t} M^{\prime}$ with $M^{\prime}(R)=0$, as no $s \in t^{\bullet}$ is in R. This proves the property.

Exercise 6.5 Using traps to show non-reachability

Consider the Petri net below. We want to show that M_{0} is not reachable from some reachable marking M (thus showing that M_{0} is not a home marking and the net is not cyclic).

(a) Find a trap R not marked at M_{0}.
(b) Find a marking M reachable from M_{0} that marks R.
(c) Use R to construct a constraint over the markings reachable from M and show that M_{0} is not reachable from M.

Solution:

(a) The trap $R=\left\{s_{1}, s_{3}, s_{4}, s_{6}, s_{7}\right\}$ is not marked at M_{0}.
(b) By firing t_{3} at M_{0}, we reach the marking $M=(0,0,0,0,1,1,0)$ which marks s_{6} and therefore R.
(c) As $M(R)>0$, all markings $M^{\prime} \in[M\rangle$ need to satisfy $M^{\prime}(R)>0$. Initially, we have $M_{0}(R)=0$, so M_{0} can not be reachable from M.

Exercise 6.6 Linear inequation net

Consider the following set, defined by a linear inequation.

$$
X=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{N}^{4} \mid 2 x_{1}+5 x_{2} \leq 3 x_{3}+4 x_{4}\right\}
$$

Give a Petri net $\left(N, M_{0}\right)$ (with or without weighted arcs) containing four designated places x_{1}, x_{2}, x_{3} and x_{4} (and possibly other places) such that $\left\{\left(M\left(x_{1}\right), M\left(x_{2}\right), M\left(x_{3}\right), M\left(x_{4}\right)\right) \mid M \in\left[M_{0}\right\rangle\right\}=X$, i.e., the reachable markings represent the set X.

Solution: The Petri net below has the places x_{1}, x_{2}, x_{3} and x_{4} for keeping track of the values and the place s, which keeps track of the difference $\left(3 x_{3}+4 x_{4}\right)-\left(2 x_{1}+5 x_{2}\right)$ between the right-hand side and the left-hand side of the inequation. The transitions t_{1} to t_{4} increase each x_{i} by one and add or remove the appropriate amount to s, depending on whether x_{i} appears on the left-hand side or right-hand side of the inequation.

