## Solution

## Petri nets - Homework 5

Discussed on Thursday $11^{\text {th }}$ June, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

## Exercise 5.1 Marking equation

(a) Construct the incidence matrix $\mathbf{N}$ of the following Petri net:

(b) Use the marking equation to decide whether the following markings are not reachable, or may be reachable. Does it make a difference whether the solution space is restricted to the natural numbers or to the rationals?

$$
M_{1}=(0,0,0,0) \quad M_{2}=(1,1,1,1) \quad M_{3}=(1,4,1,1)
$$

## Solution:

(a) The following is the incidence matrix of the Petri net:

$$
\mathbf{N}=\begin{gathered}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{gathered}\left(\begin{array}{cccc}
t_{1} & t_{2} & t_{3} & t_{4} \\
1 & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

(b) For each $M$, we need to solve the marking equation $M=M_{0}+\mathbf{N} \cdot X$ for $X$. We can solve the system of linear equations $\mathbf{N} \cdot X=M-M_{0}$ simultaneously for $M_{1}, M_{2}$ and $M_{3}$ :

$$
\left(\begin{array}{rrrr|rrr}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
-1 & 1 & -1 & 0 & -1 & 0 & 3 \\
0 & 1 & 1 & -1 & 0 & 1 & 1 \\
0 & 0 & -1 & 1 & 0 & 1 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{llll|rrr}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 1 & 0 & 1 & 1 & -2 \\
0 & 0 & 0 & 1 & 1 & 2 & -1
\end{array}\right)
$$

We obtain the (in this case unique) solutions $X_{1}=(0,0,1,1), X_{2}=(1,2,1,2)$ and $X_{3}=(1,2,-2,-1)$. When looking at solutions over the rationals, we can not make any statement about the reachability of the markings. However, $X_{3}$ is no solution over the natural numbers, and there is no other solution, so we can conclude that $M_{3}$ is not reachable. $M_{1}$ and $M_{2}$ may or may not be reachable (in fact, $M_{1}$ is not reachable, but $M_{2}$ is reachable).

## Exercise 5.2 Marking equation in acyclic nets

Show the following: In a Petri net $\left(N, M_{0}\right)$ which is structurally acyclic (there is no directed cycle in the net $N$ ), a marking $M$ is reachable from $M_{0}$ iff there exists a nonnegative integer solution $X$ satisfying the marking equation $M=M_{0}+\mathbf{N} \cdot X$

Solution: Necessity follows directly from the marking equation lemma, only sufficiency remains to be shown.
We show: For any two markings $M_{s}$ and $M_{d}$ and $X \geq 0$, if $M_{d}=M_{s}+\mathbf{N} \cdot X$, then $M_{d}$ is reachable from $M_{s}$. We show this by induction on $n:=\sum_{t \in T} X(t)$.
Induction base: $n=0$. Then $X=0$ and $M_{d}=M_{s}$.
Induction hypothesis: Let $n>0$ and assume that for all $M_{d}^{\prime}, M_{s}^{\prime}$ and $X^{\prime} \geq 0$ with $\sum_{t \in T} X^{\prime}(t)<n$ and $M_{d}^{\prime}=M_{s}^{\prime}+\mathbf{N} \cdot X^{\prime}, M_{d}^{\prime}$ is reachable from $M_{s}^{\prime}$.

As $n>0$, there is a $t$ with $X(t)>0$. The net is acyclic, so from all $t$ with $X(t)>0$, let this $t$ be one which is minimal with regard to the topological order between them, i.e., there is no $t^{\prime}$ with $X\left(t^{\prime}\right)>0$ such that there is a path from $t^{\prime}$ to $t$. Define $Y \in \mathbb{N}^{|T|}$ with $Y(t):=X(t)-1$ and $Y(u):=X(u)$ if $u \neq t$. We have $X=Y+\vec{t}$ and so

$$
M_{d}=M_{s}+\mathbf{N} \cdot X=M_{s}+\mathbf{N} \cdot(Y+\vec{t})=M_{s}+\mathbf{N} \cdot Y+\mathbf{N} \cdot \vec{t} \geq 0
$$

For $s \in{ }^{\bullet} t$ we have $s \notin t^{\bullet}$ due to acyclicity, so $(\mathbf{N} \cdot \vec{t})(s)=\mathbf{N}(s, t)=-1$. None of the transitions in $\langle Y\rangle \subseteq\langle X\rangle$ put tokens in $s$, so $(\mathbf{N} \cdot Y)(s) \leq 0$. With that we get $M_{s}(s) \geq 1$, so $t$ is enabled at $M_{s}$. With $M_{s} \xrightarrow{t} M_{s}^{\prime}$ we have $M_{s}^{\prime}=M_{s}+\mathbf{N} \cdot \vec{t}$ and $M_{d}=M_{s}^{\prime}+\mathbf{N} \cdot Y$. We can apply the induction hypothesis to $M_{d}, M_{s}^{\prime}$ and $Y$ to obtain that $M_{d}$ is reachable from $M_{s}^{\prime}$. By extension, $M_{d}$ is also reachable from $M_{s}$.

## Exercise 5.3 S-invariants and T-invariants

Give a basis of the space of S-invariants and a basis of the space of T-invariants of the following net. Does the net have positive S-invariants and T-invariants? Can you make any statements about the boundedness and liveness of the net based on the invariants?

Hint: Use the alternative definitions for S-invariants and T-invariants to find them more easily.


## Solution:

A vector $I$ is an S-invariant if $I \cdot \mathbf{N}=0$ or if $\forall t \in T: \sum_{s \in \cdot t} I(s)=\sum_{s \in t} I(s)$. By the second definition, we obtain the following equations for an S-invariant $I=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right)$ :

$$
\begin{aligned}
s_{2} & =s_{1} \\
s_{1} & =s_{2} \\
s_{1}+s_{2} & =s_{4} \\
s_{3}+s_{4} & =s_{4}+s_{5} \\
s_{5}+s_{6} & =s_{2}+s_{3} \\
s_{4} & =s_{6}+s_{7} \\
s_{6} & =s_{7} \\
s_{7} & =s_{6}
\end{aligned}
$$

These can be simplified and reduced to following equivalent set of equations:

$$
\begin{aligned}
& s_{1}=s_{2}=s_{6}=s_{7} \\
& s_{4}=2 s_{1} \\
& s_{3}=s_{5}
\end{aligned}
$$

By specifying $s_{1}$ and $s_{3}$, the S-invariant is completely defined. As a basis, we obtain the following two S-invariants:

$$
\begin{aligned}
& I_{1}=(1,1,0,2,0,1,1) \\
& I_{2}=(0,0,1,0,1,0,0)
\end{aligned}
$$

A vector $J$ is a T-invariant if $\mathbf{N} \cdot J=0$ or if $\forall s \in S: \sum_{t \in \bullet} J(t)=\sum_{t \in s} J(t)$ or $J=\vec{\sigma}$ for some occurrence sequence $\sigma$ and marking $M$ with $M \xrightarrow{\sigma} M$ (fundamental property of T-invariants). With the third definition, we can identify the minimal sequences which return a marking to itself, which are $\sigma_{1}=t_{1} t_{2}, \sigma_{2}=t_{7} t_{8}$ and $\sigma_{3}=t_{1} t_{3} t_{4} t_{4} t_{5} t_{5} t_{6} t_{8}$. This gives us the following three T-invariants $J=\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right)$ as a basis:

$$
\begin{aligned}
& J_{1}=(1,1,0,0,0,0,0,0) \\
& J_{2}=(0,0,0,0,0,0,1,1) \\
& J_{3}=(1,0,1,2,2,1,0,1)
\end{aligned}
$$

The S-invariant $I_{1}+I_{2}$ and the T-invariant $J_{1}+J_{2}+J_{3}$ are positive invariants. As there is a positive S-invariant, we can conclude that the net is bounded. We can not make a statement about the liveness of the net, as having positive or certain semi-positive invariants are only necessary conditions for liveness. In fact, this net is not live, as firing $t_{6} t_{8} t_{5} t_{5} t_{1} t_{3} t_{6}$ leads to a marking from which $t_{5}$ is never enabled again.

## Exercise 5.4 Bounded net with no positive S-invariant

(a) Exhibit a Petri net $\left(N, M_{0}\right)$ which is bounded, but has no positive S-invariant.
(b) As (a), but ( $N, M_{0}$ ) is required to be live and bounded.

## Solution:

(a) The following net is bounded, but all S-invariants $I$ need to satisfy $I\left(s_{1}\right)=0$, so there is no positive S-invariant.

(b) The following net, known from exercise 2.3(c), is live and bounded.


Any S-invariant $I$ would need to satisfy

$$
\begin{aligned}
& I\left(s_{1}\right)=I\left(s_{2}\right)+I\left(s_{5}\right) \\
& I\left(s_{2}\right)=I\left(s_{1}\right)+I\left(s_{5}\right) \\
& I\left(s_{3}\right)=I\left(s_{4}\right)+I\left(s_{5}\right) \\
& I\left(s_{4}\right)=I\left(s_{3}\right)+I\left(s_{5}\right)
\end{aligned}
$$

and therefore $I\left(s_{5}\right)=0$, so there is no positive S-invariant.

## Exercise 5.5 Reproduction lemma

Let $\left(N, M_{0}\right)$ be a bounded system and let $M_{0} \xrightarrow{\sigma}$ be an infinite occurrence sequence. Show the following:
(a) There exists sequences $\sigma_{1}, \sigma_{2}, \sigma_{3}$ such that $\sigma=\sigma_{1} \sigma_{2} \sigma_{3}, \sigma_{2}$ is not the empty sequence and

$$
M_{0} \xrightarrow{\sigma_{1}} M \xrightarrow{\sigma_{2}} M \xrightarrow{\sigma_{3}}
$$

for some marking $M$.
(b) There exists a semi-positive T-invariant $J$ such that $\langle J\rangle \subseteq \mathcal{A}(\sigma)$, where $\mathcal{A}(\sigma)$ is the set of transitions appearing in $\sigma$.

## Solution:

(a) Assume $\sigma=t_{1} t_{2} t_{3} \ldots$. Define $M_{0} \xrightarrow{t_{1}} M_{1} \xrightarrow{t_{2}} M_{2} \xrightarrow{t_{3}} \ldots$. By boundedness, the markings $M_{0}, M_{1}, M_{2}, \ldots$ cannot be pairwise different. Suppose $M=M_{i}=M_{j}$ for two indices $i, j, 0 \leq i<j$. Define $\sigma_{1}=t_{1} \ldots t_{i}, \sigma_{2}=t_{i+1} \ldots t_{j}$ and $\sigma_{3}=t_{j+1} t_{j+2} \ldots$. The sequence $\sigma_{2}$ is not empty because $i<j$.
(b) Take, with the notions of (a), $J=\overrightarrow{\sigma_{2}}$. The result then follows from the fundamental property of T-invariants because $M \xrightarrow{\sigma_{2}} M$.

