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Solution

Petri nets – Homework 3

Discussed on Thursday 21st May, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 3.1 Coverability

Construct the coverability graph for the Petri net below.

(a) List the unbounded places of the Petri net.

(b) Decide if the following markings M = (s1, s2, s3, s4) are coverable:

M1 = (1, 0, 0, 0) M2 = (0, 0, 1, 0) M3 = (1, 1, 0, 0) M4 = (0, 0, 1, 1) M5 = (1, 0, 1, 0) M6 = (0, 1, 0, 1)

s1 s2

s3 s4

t1

t2

t3 t4

Solution: The coverability graph is as follows:

(1, 0, 0, 0) (0, 1, 0, 0)

(1, 0, ω, 0) (0, 1, ω, 0)

(1, 0, ω, ω) (0, 1, ω, ω)

t1

t2
t3

t1

t2
t3

t4
t1

t2
t3 t4

(a) The places s3 and s4 are unbounded, as there are ω-markings M,M ′ with M(s3) = ω and M ′(s4) = ω.

(b) The markings M1, M2, M4 and M5 are covered by (1, 0, ω, ω) and M6 is covered by (0, 1, ω, ω). The marking M3 is not
coverable, as there is no ω-marking M with M(s1) ≥ 1 and M(s2) ≥ 1.

Exercise 3.2 Reachability in Petri nets with weighted arcs

Reduce the reachability problem for Petri nets with weighted arcs to the reachability problem for Petri nets without weighted
arcs.

For that, describe an algorithm that, given a Petri net with weighted arcs N = (S, T,W,M0) and a marking M , constructs a
Petri net N ′ = (S′, T ′, F ′,M ′

0) and a marking M ′ such that M is reachable in N if and only if M ′ is reachable in N ′. The
algorithm should run in polynomial time (you may assume unary encoding for the weights in the input, although it is also
possible with a binary encoding).

Apply the algorithm to the Petri net below with the target marking M = (2, 0, 0) and give the resulting Petri net N ′ and
marking M ′.



s1 s2 s3t1
2

t2
2

t3

Solution: We use the following approach: We replace each place in the Petri net with weighted arcs with a ring of places in
the Petri net without weighted arcs. The size of the ring is given by the maximum input or output weight, and the sum of the
tokens in the ring represent the number of tokens in the original place. The tokens can move around freely in the ring, and a
transition with a weighted arc that puts or takes k tokens into or out of the original place is now connected with unweighted
arcs to k of the places in the ring.

Formally, let S = {s1, . . . , sn} be the places of the Petri net N . For each si ∈ S, define an integer ki by

ki := max({W (t, si) | t ∈ T} ∪ {W (si, t) | t ∈ T})

The places in the Petri net N ′ are the sets of ring places for each original place. The transitions are the original transition,
plus a fresh set of ring transitions.

S′ =
⋃
si∈S

{si,j | 1 ≤ j ≤ ki} T ′ = T ] {tsi,j | si,j ∈ S′}

The flow relation connects each transition t to a number of ring places si,j given by the weight between t and si. We also
connect the ring places and transitions cyclically.

F ′ ={(si,j , t) ∈ S′ × T |W (si, t) ≥ j} ∪ {(t, si,j) ∈ T × S′ |W (t, si) ≥ j} ∪
{(si,j , tsi,j ) | si,j ∈ S′} ∪ {(tsi,j , tsi,1+(j mod ki)

) | si,j ∈ S′}

The initial and target marking are given by having all the tokens in the first place of each ring.

M ′
0(si,j) =

{
M0(si) if j = 1

0 otherwise
M ′(si,j) =

{
M(si) if j = 1

0 otherwise

By construction, if M is reachable in N , then there is a reachable marking M ′ in N ′ with
∑

j M
′(si,j) = M(si) for all si ∈ S.

We can use the ring transitions to move all tokens in si,j to si,1 to reach the target marking.

Applying the construction to the Petri net and marking above gives us the Petri net below, along with the marking M ′ given
by M ′(s1,1) = 2 and M ′(s) = 0 for all places s 6= s1,1.

s1,1

s1,2

s2,1

s3,1

s3,2

ts1,1ts1,2

ts2,1

ts3,1ts3,2

t1 t2

t3

Exercise 3.3 Uniqueness of the coverability graph

In the algorithm for the construction of the coverability graph, the search strategy (breadth-first or depth-first search and
traversal order for visiting child nodes) is not specified. Show that the coverability graph obtained is not unique by exhibiting
a Petri net and two different coverability graphs for this Petri net obtained by the algorithm with different search strategies.

Solution: Take the following Petri net:



s1 s2

t1

t2

t3

If, for the construction of the coverability graph, the path M0 = (1, 0)
t1−→ (0, 1)

t2−→ (1, 0)
t3−→ (1, 1) is first explored, then (1, 1)

strictly covers and is reachable from (0, 1) and (1, 0), so the node (ω, ω) is added to the coverability graph. The resulting graph
is:

(1, 0) (0, 1)

(ω, ω) (0, ω)

t1

t2
t3 t3

t2

t1, t2, t3 t3

If instead, the path M0 = (1, 0)
t3−→ (1, 1) is explored first, then (1, 1) only strictly covers and is reachable from (1, 0), so the

node (1, ω) is added to the coverability graph, resulting in the following graph:

(1, 0) (0, 1)

(ω, ω) (0, ω)

(1, ω)

t1

t2
t3

t3

t2

t3

t2

t1, t2, t3 t3

Exercise 3.4 Backwards reachability with transfer arcs

Another variant of Petri nets are nets with transfer arcs, a generalization of nets with reset arcs:

Definition 3.4.1 (Nets with transfer arcs). A net with transfer arcs N = (S, T, F,R) consists of two disjoint sets of places
and transitions, a set F ⊆ (S × T ) ∪ (T × S) of arcs, and a set R ⊆ (S × T ) ∪ (T × S), disjoint from F, of transfer arcs.

A transition t is enabled at a marking M of N if M(s) > 0 for every place s such that (s, t) ∈ F ∪ R. If t is enabled then it
can occur leading to the marking M ′ obtained after the following operations:

1. Let k be the sum of the tokens in all places s such that (s, t) ∈ R, i.e., k :=
∑

{s∈S|(s,t)∈R} M(s).

2. Remove one token from every place s such that (s, t) ∈ F .

3. Remove all tokens from every place s such that (s, t) ∈ R.

4. Add one token to every place s such that (t, s) ∈ F .

5. Add k tokens to every place s such that (t, s) ∈ R.

Show that the abstract backwards-reachability algorithm can be applied to Petri nets with transfer arcs by showing that the
transition relation is monotonic.

Solution: To show monotonicity, we need to show that for every x
t−→ y and every x′ ≥ x, there is y′ ≥ y such that x′ t−→ y′.

First, if t is enabled at x, then x′(s) ≥ x(s) > 0 for every place s such that (s, t) ∈ F ∪R. Therefore t is also enabled at x′ and

we can obtain y′ from x′ t−→ y′. To show that y′ ≥ y, we show that each of the steps from the operations above is monotonic.

For a transition t and i ∈ [1, 5], we denote by m
t|i−→ m′ that applying step i from the 5 operations above on m results in the

marking m′. We then break x
t−→ y down into x

t|1−−→ x1

t|2−−→ x2

t|3−−→ x3

t|4−−→ x4

t|5−−→ y and x′ t−→ y′ into x′ t|1−−→ x′
1

t|2−−→ x′
2

t|3−−→
x′
3

t|4−−→ x′
4

t|5−−→ y′. Assuming x′ ≥ x, we show that x′
1 ≥ x1, x′

2 ≥ x2, x′
3 ≥ x3, x′

4 ≥ x4 and finally y′ ≥ y.



1. x
t|1−−→ x1, x′ t|1−−→ x′

1 and x′ ≥ x: We set k′ :=
∑

{s∈S|(s,t)∈R} x
′(s) ≥

∑
{s∈S|(s,t)∈R} x(s) =: k. The number of tokens

remains unchanged, therefore x′
1 = x′ ≥ x = x1.

2. x1

t|2−−→ x2, x′
1

t|2−−→ x′
2 and x′

1 ≥ x1: For every s with (s, t) ∈ F , We have x′
2(s) = x′

1(s) − 1 ≥ x1(s) − 1 = x′
2(s) and for

every other s, we have x′
2(s) = x′

1(s) ≥ x′
1(s) = x2(s), therefore x′

2 ≥ x2.

3. x2

t|3−−→ x3, x′
2

t|3−−→ x′
3 and x′

2 ≥ x2: For every s with (s, t) ∈ R, we have x′
3(s) = 0 = x3(s) and for every other s, we have

x′
3(s) = x′

2 ≥ x2 = x3(s), therefore x′
3 ≥ x3.

4. x3

t|4−−→ x4, x′
3

t|4−−→ x′
4 and x′

3 ≥ x3: For every s with (t, s) ∈ F , we have x′
4(s) = x′

3(s) + 1 ≥ x3(s) + 1 = x4(s) and for
every other s, we have x′

4(s) = x′
3 ≥ x3 = x4(s), therefore x′

4 ≥ x4.

5. x4

t|5−−→ y, x′
4

t|5−−→ y′ and x′
4 ≥ x4: For every s with (t, s) ∈ R, we have y′(s) = x′

4 + k′ ≥ x4 + k = y(s) and for every other
s, we have y′(s) = x′

4 ≥ x4 = y(s), therefore y′ ≥ y.

Exercise 3.5 Number of tokens in bounded nets

Give a family of bounded Petri nets {Nk}k∈N such that the size of Nk is bounded by O(k) (that is, there is a c ∈ N such that
for all Nk = (S, T, F,M0), we have |S| + |T | + |F | ≤ ck and ∀s ∈ S : M0(s) ≤ ck), but each Nk has a reachable marking M

and a place s with M(s) ≥ 22
k

.

Hint: Construct a net that doubles the number of tokens in a place. Modify it so that one occurrence sequence for doubling
removes exactly one token from a certain place. Use this construct again or the construct from the lecture to put 2k tokens
into that place.

Solution: In the following net, we can fire t1t2t3t4t4 to duplicate a token in s1. If there are n tokens in s1, the firing sequence
tn1 t

n
2 t

n
3 t

2n
4 doubles the number of tokens in s1.

s1

s2 s3

s4

t1

t2 t3

t4

By modifying the net as follows, we ensure that to fire tn1 t
n
2 t

n
3 t

2n
4 , we need to move the token from s6 to s5 and back and remove

one token from s0. Now the net is bounded, and with k tokens in s0, we can put up to 2k tokens in s1.

s1

s2 s3

s4

s5

s6

k

s0

t1

t2 t3

t4

t5 t6



We can duplicate the net and use the output place s1 as the input place s0 for the other net. In the following net, we can fire

the transitions in the right net to put 2k tokens in s′1, and then fire the transitions in the left net to put 22
k

tokens in s1. The
net has a constant size, and we have M(s) ≤ k for all places s.

s1

s2 s3

s4

s5

s6

s′1

s′2 s′3

s′4

s′5

s′6

k

s0

t1

t2 t3

t4

t5 t6

t′1

t′2 t′3

t′4

t′5 t′6


