Petri nets – Endterm

Last name: __

First name: __

Student ID no.: _______________________________________

Signature: __

• If you feel ill, let us know immediately.
• Please, do not write until told so.
• You will be given 90 minutes to fill in all the required information and write down your solutions.
• Don’t forget to sign.
• Write with a non-erasable pen, do not use red or green color.
• You are not allowed to use auxiliary means other than your pen and a printout of the summary.
• You may answer in English or German.
• Please turn off your cell phone.
• Should you require additional scrap paper, please tell us.
• You can obtain 40 points in the exam. You need 17 points in total to pass (grade 4.0).
• Don’t fill in the table below.
• Good luck!

<table>
<thead>
<tr>
<th></th>
<th>Ex 1</th>
<th>Ex 2</th>
<th>Ex 3</th>
<th>Ex 4</th>
<th>Ex 5</th>
<th>∑</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise 1

Apply the backwards-reachability algorithm to the net below and the marking \(M = (0, 0, 1, 1) \) to decide if \(M \) can be covered from the initial marking \(M_0 = (1, 1, 0, 0) \). Record all intermediate steps.

![Petri net diagram]

Exercise 2

9P = 3 + 3 + 3

(a) Exhibit a live Petri net \((N, M_0)\) and a marking \(M \geq M_0 \) such that \((N, M)\) is not live. Argue succinctly why \((N, M)\) is not live (for example, by giving an occurrence sequence leading to a dead marking).

(b) Exhibit a connected net \(N \) such that \(I = (1, -1) \) is an S-invariant and \(J = (1, 1) \) is a T-invariant of \(N \). Explain your answer.

(c) Exhibit a Petri net \((N, M_0)\) and a marking \(M \) such that the marking equation \(M = M_0 + N \cdot X \) has a solution \(X : T \to \mathbb{Q} \) with \(X \geq 0 \), but no solution \(X : T \to \mathbb{N} \). Hint: A net with 2 places and 2 transitions, with no tokens in \(M_0 \) and one token in \(M \), suffices.

Exercise 3

8P = 4 + 4

(a) Exhibit a Petri net with the following reachability graph, where \(M_0 \) is the initial marking. Provide a clean drawing.

(b) Add arcs to the net below on the left such that it has the reachability graph given on the right, where \(M_0 \) is the initial marking. Provide a clean drawing.

Please turn over!
Exercise 4

For the following net, give:

(a) A positive S-invariant I (I is positive if $I(s) > 0$ for all places s).
(b) A positive T-invariant J (J is positive if $J(t) > 0$ for all transitions t).

Explain briefly the procedure you have followed to compute I and J.

Exercise 5

A vector X is semi-positive if $X \geq 0$ and $X \neq 0$.

(a) Prove: Let N be a net and I a semi-positive S-invariant of N. The set $R = \{s \mid I(s) > 0\}$ of places is a trap of N.

(b) Prove: Every live T-system is cyclic.

(c) Let $N = (S, T, F)$ be a net. A T-surinvariant of N is a vector $J : T \rightarrow \mathbb{Q}$ such that $N \cdot J \geq 0$.

Prove: Let (N, M_0) be a Petri net. If there is an infinite occurrence sequence σ enabled at M_0, then N has a semi-positive T-surinvariant. Hint: Use Dickson’s lemma.