Petri nets - Endterm

Last name:

First name:

Student ID no.:

Signature:

- If you feel ill, let us know immediately.
- Please, do not write until told so.
- You will be given $\mathbf{9 0}$ minutes to fill in all the required information and write down your solutions.
- Don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen and a printout of the summary.
- You may answer in English or German.
- Please turn off your cell phone.
- Should you require additional scrap paper, please tell us.
- You can obtain $\mathbf{4 0}$ points in the exam. You need $\mathbf{1 7}$ points in total to pass (grade 4.0).
- Don't fill in the table below.
- Good luck!

Ex 1	Ex 2	Ex 3	$\operatorname{Ex} 4$	$\operatorname{Ex} 5$	\sum

Apply the backwards-reachability algorithm to the net below and the marking $M=(0,0,1,1)$ to decide if M can be covered from the initial marking $M_{0}=(1,1,0,0)$. Record all intermediate steps.

Exercise 2

(a) Exhibit a live Petri net $\left(N, M_{0}\right)$ and a marking $M \geq M_{0}$ such that (N, M) is not live. Argue succinctly why (N, M) is not live (for example, by giving an occurrence sequence leading to a dead marking).
(b) Exhibit a connected net N such that $I=(1,-1)$ is an S-invariant and $J=(1,1)$ is a T-invariant of N. Explain your answer.
(c) Exhibit a Petri net $\left(N, M_{0}\right)$ and a marking M such that the marking equation $M=M_{0}+\mathbf{N} \cdot X$ has a solution $X: T \rightarrow \mathbb{Q}$ with $X \geq 0$, but no solution $X: T \rightarrow \mathbb{N}$. Hint: A net with 2 places and 2 transitions, with no tokens in M_{0} and one token in M, suffices.

Exercise 3

(a) Exhibit a Petri net with the following reachability graph, where M_{0} is the initial marking. Provide a clean drawing.

(b) Add arcs to the net below on the left such that it has the reachability graph given on the right, where M_{0} is the initial marking. Provide a clean drawing.

For the following net, give:
(a) A positive S-invariant I (I is positive if $I(s)>0$ for all places $s)$.
(b) A positive T-invariant $J(J$ is positive if $J(t)>0$ for all transitions $t)$.

Explain briefly the procedure you have followed to compute I and J.

Exercise 5

A vector X is semi-positive if $X \geq 0$ and $X \neq 0$.
(a) Prove: Let N be a net and I a semi-positive S-invariant of N. The set $R=\{s \mid I(s)>0\}$ of places is a trap of N.
(b) Prove: Every live T-system is cyclic.
(c) Let $N=(S, T, F)$ be a net. A T-surinvariant of N is a vector $J: T \rightarrow \mathbb{Q}$ such that $\mathbf{N} \cdot J \geq 0$.

Prove: Let $\left(N, M_{0}\right)$ be a Petri net. If there is an infinite occurrence sequence σ enabled at M_{0}, then N has a semi-positive T-surinvariant. Hint: Use Dickson's lemma.

