SOLUTION

Petri nets – Endterm

Last name:	
First name:	
Student ID no.:	
Signature:	

- If you feel ill, let us know immediately.
- Please, do not write until told so.
- You will be given 90 minutes to fill in all the required information and write down your solutions.
- Don't forget to **sign**.
- Write with a non-erasable **pen**, do not use red or green color.
- You are not allowed to use **auxiliary means** other than your pen and a printout of the summary.
- You may answer in English or German.
- Please turn off your **cell phone**.
- Should you require additional **scrap paper**, please tell us.
- You can obtain 40 points in the exam. You need 17 points in total to pass (grade 4.0).
- Don't fill in the table below.
- Good luck!

Ex 1	Ex 2	Ex 3	Ex 4	Ex 5	\sum

Exercise 1 6P

Apply the backwards-reachability algorithm to the net below and the marking M = (0, 0, 1, 1) to decide if M can be covered from the initial marking $M_0 = (1, 1, 0, 0)$. Record all intermediate steps.

Solution:

The table below records all sets m with their minimal markings and the predecessors of the markings. New non-minimal markings are crossed out.

m	M	$pre(M,t_1)$	$pre(M, t_2)$
$\overline{m_0}$	(0,0,1,1)	(1, 1, 0, 1)	(1, 1, 1, 0)
$m_1 \setminus m_0$	(1,1,0,1)	(2,1,0,1)	(1, 2, 0, 0)
	(1,1,1,0)	(2,1,0,0)	(1,2,1,0)
$m_2 \setminus m_1$	(1, 2, 0, 0)	(2, 2, 0, 0)	(1,3,0,0)
	(2,1,0,0)	(3,1,0,0)	(2,2,0,0)

We obtain $m_3 = m_2 = \{(0,0,1,1), (1,1,0,1), (1,1,1,0), (1,2,0,0), (2,1,0,0)\}$. For no $M' \in m_3$, we have $M_0 \ge M'$, therefore M cannot be covered from M_0 .

Exercise 2 9P=3+3+3

- (a) Exhibit a live Petri net (N, M_0) and a marking $M \ge M_0$ such that (N, M) is not live. Argue succinctly why (N, M) is not live (for example, by giving an occurrence sequence leading to a dead marking).
- (b) Exhibit a connected net N such that I = (1, -1) is an S-invariant and J = (1, 1) is a T-invariant of N. Explain your answer.
- (c) Exhibit a Petri net (N, M_0) and a marking M such that the marking equation $M = M_0 + \mathbf{N} \cdot X$ has a solution $X : T \to \mathbb{Q}$ with $X \ge 0$, but no solution $X : T \to \mathbb{N}$. Hint: A net with 2 places and 2 transitions, with no tokens in M_0 and one token in M, suffices.

Solution:

(a) The following Petri net is live with $M_0 = (1, 0, 0)$, but not live with the initial marking M = (1, 0, 1), as firing t_2 leads to a dead marking.

(b) The net below has I = (1, -1) as an S-invariant and J = (1, 1) as a T-invariant, as shown by the invariant equations:

$$t_1: I(s_1) + I(s_2) = 0$$

$$t_2: 0 = I(s_1) + I(s_2)$$

$$s_1: J(t_1) = J(t_2)$$

$$s_2: J(t_2) = J(t_1)$$

(c) The following Petri net with M=(0,1) only has $X=\left(\frac{1}{2},\frac{1}{2}\right)$ as a solution to the marking equation.

Exercise 3 8P=4+4

(a) Exhibit a Petri net with the following reachability graph, where M_0 is the initial marking. Provide a clean drawing.

(b) Add arcs to the net below on the left such that it has the reachability graph given on the right, where M_0 is the initial marking. Provide a clean drawing.

Solution:

(a)

(b)

Exercise 4 8P=4+4

For the following net, give:

- (a) A positive S-invariant I (I is positive if I(s) > 0 for all places s).
- (b) A positive T-invariant J (J is positive if J(t) > 0 for all transitions t).

Explain briefly the procedure you have followed to compute I and J.

Solution:

- (a) By following transitions, we can identify the S-components (which are subnet S-nets) $\{s_1, s_3, s_5\}$, $\{s_2, s_3, s_6, s_7, s_8, s_9\}$ and $\{s_3, s_4, s_6, s_7, s_8, s_9\}$, which give us the semi-positive S-invariants $I_1 = (1, 0, 1, 0, 1, 0, 0, 0, 0)$, $I_2 = (0, 1, 1, 0, 0, 1, 1, 1, 1)$ and $I_3 = (0, 0, 1, 1, 0, 1, 1, 1, 1)$. By adding them up, we get the positive S-invariant I = (1, 1, 3, 1, 1, 2, 2, 2, 2).
- (b) The left part of the net with transitions $\{t_1, t_2, t_3, t_4, t_5\}$ is a T-net, which gives us the semi-positive T-invariant $J_1 = \{1, 1, 1, 1, 0, 0, 0, 0\}$. In the right part with transitions $\{t_6, t_7, t_8, t_9\}$, after firing each transition once, we need to fire t_8 once more for a net change of zero tokens, giving us $J_2 = \{0, 0, 0, 0, 0, 1, 1, 2, 1\}$. Adding these up gives us the positive T-invariant J = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Exercise 5 9P=3+3+3

A vector X is semi-positive if $X \geq 0$ and $X \neq 0$.

(a) Prove: Let N be a net and I a semi-positive S-invariant of N. The set $R = \{s \mid I(s) > 0\}$ of places is a trap of N.

- (b) Prove: Every live T-system is cyclic.
- (c) Let N = (S, T, F) be a net. A T-surinvariant of N is a vector $J : T \to \mathbb{Q}$ such that $\mathbf{N} \cdot J \geq 0$.

Prove: Let (N, M_0) be a Petri net. If there is an infinite occurrence sequence σ enabled at M_0 , then N has a semi-positive T-surinvariant. *Hint*: Use Dickson's lemma.

Solution:

- (a) Let $R = \{s \mid I(s) > 0\}$. For $t \in R^{\bullet}$, there is an $s \in R$ with $s \in {}^{\bullet}t$. As I(s) > 0, $I(s') \ge 0$ for all $s' \in S$ and $\sum_{s \in {}^{\bullet}t} I(s) = \sum_{s' \in {}^{\bullet}} I(s')$, there is an $s' \in t^{\bullet}$ with I(s') > 0. Therefore $s' \in R$ and $t \in {}^{\bullet}R$, so $R^{\bullet} \subseteq {}^{\bullet}R$ and R is a trap.
- (b) In a live T-system, a marking M is reachable from M_0 iff $M_0 \sim M$. Let M be a reachable marking. Then $M_0 \sim M$ and, as the relation is symmetric, $M \sim M_0$, so M_0 is reachable from M. Therefore the net is cyclic.
- (c) Let $\sigma = t_1 t_2 t_3 \dots$ with $M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} M_2 \xrightarrow{t_3} \dots$ By Dickson's lemma, there are indices i, j with i < j and $M_i \le M_j$. With $\sigma_1 = t_1 \dots t_i$ and $\sigma_2 = t_{i+1} \dots t_j$, we have $M_0 \xrightarrow{\sigma_1} M_i \xrightarrow{\sigma_2} M_j$. By the marking equation, we have $M_j = M_i + \mathbf{N} \cdot \vec{\sigma_2}$ and $\mathbf{N} \cdot \vec{\sigma_2} = M_j M_i \ge 0$. As σ_2 is not empty, $\vec{\sigma_2}$ is a semi-positive T-surinvariant.