SOLUTION

Petri nets - Endterm

Last name:

First name:

Student ID no.:

Signature:

- If you feel ill, let us know immediately.
- Please, do not write until told so.
- You will be given $\mathbf{9 0}$ minutes to fill in all the required information and write down your solutions.
- Don't forget to sign.
- Write with a non-erasable pen, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen and a printout of the summary.
- You may answer in English or German.
- Please turn off your cell phone.
- Should you require additional scrap paper, please tell us.
- You can obtain 40 points in the exam. You need $\mathbf{1 7}$ points in total to pass (grade 4.0).
- Don't fill in the table below.
- Good luck!

Ex 1	Ex 2	Ex 3	Ex 4	Ex 5	\sum

Apply the backwards-reachability algorithm to the net below and the marking $M=(0,0,1,1)$ to decide if M can be covered from the initial marking $M_{0}=(1,1,0,0)$. Record all intermediate steps.

Solution:

The table below records all sets m with their minimal markings and the predecessors of the markings. New non-minimal markings are crossed out.

m	M	$\operatorname{pre}\left(M, t_{1}\right)$	$\operatorname{pre}\left(M, t_{2}\right)$
m_{0}	$(0,0,1,1)$	$(1,1,0,1)$	$(1,1,1,0)$
$m_{1} \backslash m_{0}$	$(1,1,0,1)$	$(2,1,0,1)$	$(1,2,0,0)$
	$(1,1,1,0)$	$(2,1,0,0)$	$(1,2,1,0)$
$m_{2} \backslash m_{1}$	$1,2,0,0)$ $(2,1,0,0)$	$(2,2,0,0)$	$(1,3,0,0)$
	$(3,1,0,0)$	$(2,2,0,0)$	

We obtain $m_{3}=m_{2}=\{(0,0,1,1),(1,1,0,1),(1,1,1,0),(1,2,0,0),(2,1,0,0)\}$. For no $M^{\prime} \in m_{3}$, we have $M_{0} \geq M^{\prime}$, therefore M cannot be covered from M_{0}.

Exercise 2

(a) Exhibit a live Petri net $\left(N, M_{0}\right)$ and a marking $M \geq M_{0}$ such that (N, M) is not live. Argue succinctly why (N, M) is not live (for example, by giving an occurrence sequence leading to a dead marking).
(b) Exhibit a connected net N such that $I=(1,-1)$ is an S-invariant and $J=(1,1)$ is a T-invariant of N. Explain your answer.
(c) Exhibit a Petri net $\left(N, M_{0}\right)$ and a marking M such that the marking equation $M=M_{0}+\mathbf{N} \cdot X$ has a solution $X: T \rightarrow \mathbb{Q}$ with $X \geq 0$, but no solution $X: T \rightarrow \mathbb{N}$. Hint: A net with 2 places and 2 transitions, with no tokens in M_{0} and one token in M, suffices.

Solution:

(a) The following Petri net is live with $M_{0}=(1,0,0)$, but not live with the initial marking $M=(1,0,1)$, as firing t_{2} leads to a dead marking.

(b) The net below has $I=(1,-1)$ as an S-invariant and $J=(1,1)$ as a T-invariant, as shown by the invariant equations:

$$
\begin{aligned}
& t_{1}: I\left(s_{1}\right)+I\left(s_{2}\right)=0 \\
& t_{2}: 0=I\left(s_{1}\right)+I\left(s_{2}\right) \\
& s_{1}: J\left(t_{1}\right)=J\left(t_{2}\right) \\
& s_{2}: J\left(t_{2}\right)=J\left(t_{1}\right)
\end{aligned}
$$

(c) The following Petri net with $M=(0,1)$ only has $X=\left(\frac{1}{2}, \frac{1}{2}\right)$ as a solution to the marking equation.

Exercise 3

(a) Exhibit a Petri net with the following reachability graph, where M_{0} is the initial marking. Provide a clean drawing.

(b) Add arcs to the net below on the left such that it has the reachability graph given on the right, where M_{0} is the initial marking. Provide a clean drawing.

Solution:

(a)

(b)

Exercise 4
For the following net, give:
(a) A positive S-invariant I (I is positive if $I(s)>0$ for all places s).
(b) A positive T-invariant $J(J$ is positive if $J(t)>0$ for all transitions $t)$.

Explain briefly the procedure you have followed to compute I and J.

Solution:

(a) By following transitions, we can identify the S-components (which are subnet S-nets) $\left\{s_{1}, s_{3}, s_{5}\right\},\left\{s_{2}, s_{3}, s_{6}, s_{7}, s_{8}, s_{9}\right\}$ and $\left\{s_{3}, s_{4}, s_{6}, s_{7}, s_{8}, s_{9}\right\}$, which give us the semi-positive S-invariants $I_{1}=(1,0,1,0,1,0,0,0,0), I_{2}=(0,1,1,0,0,1,1,1,1)$ and $I_{3}=(0,0,1,1,0,1,1,1,1)$. By adding them up, we get the positive S-invariant $I=(1,1,3,1,1,2,2,2,2)$.
(b) The left part of the net with transitions $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}$ is a T-net, which gives us the semi-positive T-invariant $J_{1}=$ $\{1,1,1,1,1,0,0,0,0\}$. In the right part with transitions $\left\{t_{6}, t_{7}, t_{8}, t_{9}\right\}$, after firing each transition once, we need to fire t_{8} once more for a net change of zero tokens, giving us $J_{2}=\{0,0,0,0,0,1,1,2,1\}$. Adding these up gives us the positive T-invariant $J=(1,1,1,1,1,1,1,2,1)$.

A vector X is semi-positive if $X \geq 0$ and $X \neq 0$.
(a) Prove: Let N be a net and I a semi-positive S-invariant of N. The set $R=\{s \mid I(s)>0\}$ of places is a trap of N.
(b) Prove: Every live T-system is cyclic.
(c) Let $N=(S, T, F)$ be a net. A T-surinvariant of N is a vector $J: T \rightarrow \mathbb{Q}$ such that $\mathbf{N} \cdot J \geq 0$.

Prove: Let $\left(N, M_{0}\right)$ be a Petri net. If there is an infinite occurrence sequence σ enabled at M_{0}, then N has a semi-positive T-surinvariant. Hint: Use Dickson's lemma.

Solution:

(a) Let $R=\{s \mid I(s)>0\}$. For $t \in R^{\bullet}$, there is an $s \in R$ with $s \in{ }^{\bullet} t$. As $I(s)>0, I\left(s^{\prime}\right) \geq 0$ for all $s^{\prime} \in S$ and $\sum_{s \in \bullet} I(s)=\sum_{s^{\prime} \in t^{\bullet}} I\left(s^{\prime}\right)$, there is an $s^{\prime} \in t^{\bullet}$ with $I\left(s^{\prime}\right)>0$. Therefore $s^{\prime} \in R$ and $t \in{ }^{\bullet} R$, so $R^{\bullet} \subseteq \bullet R$ and R is a trap.
(b) In a live T-system, a marking M is reachable from M_{0} iff $M_{0} \sim M$. Let M be a reachable marking. Then $M_{0} \sim M$ and, as the relation is symmetric, $M \sim M_{0}$, so M_{0} is reachable from M. Therefore the net is cyclic.
(c) Let $\sigma=t_{1} t_{2} t_{3} \ldots$ with $M_{0} \xrightarrow{t_{1}} M_{1} \xrightarrow{t_{2}} M_{2} \xrightarrow{t_{3}} \ldots$ By Dickson's lemma, there are indices i, j with $i<j$ and $M_{i} \leq M_{j}$. With $\sigma_{1}=t_{1} \ldots t_{i}$ and $\sigma_{2}=t_{i+1} \ldots t_{j}$, we have $M_{0} \xrightarrow{\sigma_{1}} M_{i} \xrightarrow{\sigma_{2}} M_{j}$. By the marking equation, we have $M_{j}=M_{i}+\mathbf{N} \cdot \overrightarrow{\sigma_{2}}$ and $\mathbf{N} \cdot \overrightarrow{\sigma_{2}}=M_{j}-M_{i} \geq 0$. As σ_{2} is not empty, $\overrightarrow{\sigma_{2}}$ is a semi-positive T-surinvariant.

