Petri nets – Resit

Last name: ________________________________

First name: ________________________________

Student ID no.: ________________________________

Signature: ________________________________

• If you feel ill, let us know immediately.
• Please, do not write until told so.
• You will be given 90 minutes to fill in all the required information and write down your solutions.
• Don’t forget to sign.
• Write with a non-erasable pen, do not use red or green color.
• You are not allowed to use auxiliary means other than your pen and a printout of the summary.
• You may answer in English or German.
• Please turn off your cell phone.
• Should you require additional scrap paper, please tell us.
• You can obtain 40 points in the exam. You need 17 points in total to pass (grade 4.0).
• Don’t fill in the table below.
• Good luck!

<table>
<thead>
<tr>
<th>Ex 1</th>
<th>Ex 2</th>
<th>Ex 3</th>
<th>Ex 4</th>
<th>Ex 5</th>
<th>∑</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 1

(a) Apply the coverability graph algorithm to the Petri net with weighted arcs below by using the enabling and firing rule for transitions with weighted arcs as the enabled and fire operation in the algorithm. Give the resulting coverability graph.

(b) Exhibit a Petri net (with or without weighted arcs) such that every node in the coverability graph of the Petri net has a successor, but the Petri net has a deadlock. Also give the coverability graph and an occurrence sequence leading to a deadlock.

Exercise 2

For an occurrence sequence σ and a set U, we define the projection $h_U(\sigma)$ of σ onto U as the occurrence sequence obtained from σ by deleting all occurrences of transitions not in U. For example, $h_{\{t,u\}}(v) = \epsilon$, $h_{\{t,u\}}(vtv) = t$ and $h_{\{t,u\}}(tuvutuv) = tutu$.

For a Petri net (N, M_0) and a set of transitions $U \subseteq T$, we define the language of the Petri net over U as $L_U(N, M_0) = \{h_U(\sigma) \mid M_0 \xrightarrow{\sigma} M_0\}$, i.e., the set of occurrence sequences leading back to the initial marking, projected onto U. For example, for the Petri net (N, M_0) below, we have $L_{\{t,u\}}(N, M_0) = (tu)^* = \{\epsilon, tu, tutu, tututu, \ldots\}$.

(a) Give a Petri net (N, M_0) such that $L_{\{t,u\}}(N, M_0) = (tu + ut)^*$ (another notation is $(tu \mid ut)^*$).
(b) Give a Petri net (N, M_0) such that $L_{\{t\}}(N, M_0) = (tt)^*$.

Hint: Note that a Petri net can have only one transition for each element of U.

Exercise 3

For the Petri net below, find a suitable set of S-invariants and traps, derive constraints from them over all reachable markings, and use the constraints to show that $M(s_1) < 2$ holds for all reachable markings M.

Give the S-invariants and traps, the constraints derived from them and the derivation to show $M(s_1) < 2$.

Hint: One S-invariant and one trap are sufficient.
A vector X is *semi-positive* if $X \geq 0$ and $X \neq 0$.

(a) Prove: Let N be a net and I a semi-positive S-invariant of N. The set $R = \{ s \mid I(s) > 0 \}$ of places is a siphon of N.

(b) Prove: Every live T-system has a home marking.

(c) Let $N = (S, T, F)$ be a net. A *T-surinvariant* of N is a vector $J : T \to \mathbb{Q}$ such that $N \cdot J \geq 0$.

Prove: Let (N, M_0) be a Petri net. If there is an infinite occurrence sequence σ enabled at M_0, then N has a semi-positive T-surinvariant.

Exercise 5

(a) Exhibit a Petri net (N, M_0), a trap R of N and a marking M of N such that the marking equation $M = M_0 + N \cdot X$ has a solution and R is marked in M_0, but not in M.

(b) Exhibit a strongly connected net N, a place s of N and an S-invariant I of N such that $I(s) > 0$, but s does not belong to any S-component.

(c) A T-invariant J of a Petri net (N, M_0) is called *realizable* if there are occurrence sequences σ and τ and a marking M such that $M_0 \xrightarrow{\sigma} M \xrightarrow{\tau} M$ and $J = \vec{\tau}$.

Exhibit a live Petri net (N, M_0) and a T-invariant J of N such that J is not realizable.