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Petri nets – Homework 7

Discussed on Thursday 25th June, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 7.1 Boundedness and liveness in S/T-systems

Show the following:

(a) An S-system (N,M0) is bounded for any M0.

(b) If (N,M0) is a live S-system and M ′0 ≥M0, then (N,M ′0) is also live.

(c) If (N,M0) is a live and bounded T-system, then (N,M ′0) is also bounded for any M ′0.

(d) If (N,M0) is a live T-system and M ′0 ≥M0, then (N,M ′0) is also live.

Exhibit Petri nets for the following:

(e) Give a bounded T-system (N,M0) and a marking M ′0 ≥M0 such that (N,M ′0) is not bounded.

(f) Give a 1-bounded S-system (N,M0) where M0(S) > 1.

(g) Give a live and 1-bounded T-system (N,M0) with a circuit γ where M0(γ) > 1.

Exercise 7.2 Circuits in T-systems

Consider the T-system (N,M0) below.
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(a) Find all circuits of the net.

(b) Use the circuits to decide if the system is live.

(c) For each place s, determine the bound of s by analyzing the circuits containing s.

(d) Apply the construction from the proof of Genrich’s Theorem (Theorem 5.2.9) to find a marking M ′0 such that (N,M ′0)
is live and 1-bounded.

Exercise 7.3 Paths and transitions in T-systems

For a live T-system (N,M0), with the reachability theorem (Theorem 5.2.7), we have that a marking M is reachable iff
M0 ∼M . From the proof, we can easily infer the following corollary:

Corollary 7.3.1. Let (N,M0) be a live T-system, M a marking of N and X : T → N a vector such that M = M0 + N ·X.

There is an occurrence sequence M0
σ−→M such that ~σ = X.

For a live T-system (N,M0), use this corollary to show the following. Remember that J = (1, . . . , 1) is a T-invariant of any
T-system.

(a) There is an occurrence sequence σ with M0
σ−→M0 such that σ contains every transition of N exactly once.

(b) For a reachable marking M , there exists an occurrence sequence σ with M0
σ−→ M such that σ does not contain all

transitions of N .



Exercise 7.4 Path length in T-systems

For each n ∈ N, give a 1-bounded T-system (N,M0) with n transitions and a reachable marking M such that the minimal

occurrence sequence σ with M0
σ−→M has a length of n(n−1)

2 .

Hint : First try find a Petri net and a marking for n = 3, where the minimal sequence has length 3. For this a net with 4 places
suffices. Then try to generalize your solution.


