$\underline{\text { Petri nets - Homework } 6}$

Discussed on Thursday $18^{\text {th }}$ June, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 6.1 Siphons and traps

(a) Find all the proper siphons and traps in the Petri net below.
(b) Check if each proper siphon contains an initially marked trap.

Exercise 6.2 Algorithm for the largest siphon

Recall the following algorithm for computing the largest siphon Q contained in a given set R of places:

```
Input: A net N=(S,T,F) and R\subseteqS.
Output: The largest siphon Q\subseteqR.
Initialization: Q:=R.
begin
    while there are s\inQ and t\in\bullet}s\mathrm{ such that }t\not\in\mp@subsup{Q}{}{\bullet}\mathrm{ do
        Q:=Q\{s}
    endwhile
end
```

Show that the algorithm is correct by showing
(a) that the algorithm terminates, and
(b) that after termination, Q is the largest siphon contained in R.

Exercise 6.3 Minimal siphons

(a) Exhibit a net having a minimal siphon R and a transition t such that $\left|{ }^{\bullet} t \cap R\right| \geq 2$.
(b) Construct for each $i \in \mathbb{N}$ a net with at most $2 i$ places and at least 2^{i} minimal siphons.

Exercise 6.4 Characterization of traps

Show the following proposition, a characterization of traps by their fundamental property.
Proposition 6.4.1. Let N be a net and R a set of places of $N . R$ is a trap of N iff for all markings M of N, if $M(R)>0$, then $M^{\prime}(R)>0$ for all $M^{\prime} \in[M\rangle$.

Exercise 6.5 Using traps to show non-reachability

Consider the Petri net below. We want to show that M_{0} is not reachable from some reachable marking M (thus showing that M_{0} is not a home marking and the net is not cyclic).

(a) Find a trap R not marked at M_{0}.
(b) Find a marking M reachable from M_{0} that marks R.
(c) Use R to construct a constraint over the markings reachable from M and show that M_{0} is not reachable from M.

Exercise 6.6 Linear inequation net

Consider the following set, defined by a linear inequation.

$$
X=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{N}^{4} \mid 2 x_{1}+5 x_{2} \leq 3 x_{3}+4 x_{4}\right\}
$$

Give a Petri net $\left(N, M_{0}\right)$ (with or without weighted arcs) containing four designated places x_{1}, x_{2}, x_{3} and x_{4} (and possibly other places) such that $\left\{\left(M\left(x_{1}\right), M\left(x_{2}\right), M\left(x_{3}\right), M\left(x_{4}\right)\right) \mid M \in\left[M_{0}\right\rangle\right\}=X$, i.e., the reachable markings represent the set X.

