Petri nets - Homework 5

Discussed on Thursday $11^{\text {th }}$ June, 2015.

For questions regarding the exercises, please send an email to meyerphi@in.tum.de or just drop by at room 03.11.042.

Exercise 5.1 Marking equation

(a) Construct the incidence matrix \mathbf{N} of the following Petri net:

(b) Use the marking equation to decide whether the following markings are not reachable, or may be reachable. Does it make a difference whether the solution space is restricted to the natural numbers or to the rationals?

$$
M_{1}=(0,0,0,0)
$$

$$
M_{2}=(1,1,1,1)
$$

$$
M_{3}=(1,4,1,1)
$$

Exercise 5.2 Marking equation in acyclic nets

Show the following: In a Petri net $\left(N, M_{0}\right)$ which is structurally acyclic (there is no directed cycle in the net N), a marking M is reachable from M_{0} iff there exists a nonnegative integer solution X satisfying the marking equation $M=M_{0}+\mathbf{N} \cdot X$

Exercise 5.3 S-invariants and T-invariants

Give a basis of the space of S-invariants and a basis of the space of T-invariants of the following net. Does the net have positive S-invariants and T-invariants? Can you make any statements about the boundedness and liveness of the net based on the invariants?

Hint: Use the alternative definitions for S-invariants and T-invariants to find them more easily.

Exercise 5.4 Bounded net with no positive S-invariant

(a) Exhibit a Petri net $\left(N, M_{0}\right)$ which is bounded, but has no positive S-invariant.
(b) As (a), but $\left(N, M_{0}\right)$ is required to be live and bounded.

Exercise 5.5 Reproduction lemma

Let $\left(N, M_{0}\right)$ be a bounded system and let $M_{0} \xrightarrow{\sigma}$ be an infinite occurrence sequence. Show the following:
(a) There exists sequences $\sigma_{1}, \sigma_{2}, \sigma_{3}$ such that $\sigma=\sigma_{1} \sigma_{2} \sigma_{3}, \sigma_{2}$ is not the empty sequence and

$$
M_{0} \xrightarrow{\sigma_{1}} M \xrightarrow{\sigma_{2}} M \xrightarrow{\sigma_{3}}
$$

for some marking M.
(b) There exists a semi-positive T-invariant J such that $\langle J\rangle \subseteq \mathcal{A}(\sigma)$, where $\mathcal{A}(\sigma)$ is the set of transitions appearing in σ.

