
Petri Nets

Lecture Notes for SS 2015

Prof. Javier Esparza

July 16, 2015

2

Contents

I Petri Nets: Syntax, Semantics, Models 7

1 Basic definitions 9

1.1 Preliminaries . 9

1.2 Syntax . 10

1.3 Semantics . 12

2 Modelling with Petri nets 17

2.1 A buffer of capacity n . 17

2.2 Train tracks . 18

2.3 Dining philosophers . 20

2.4 A logical puzzle . 20

2.5 Peterson’s algorithm . 22

2.6 The action/reaction protocol . 22

2.7 Variants of the main model . 24

2.8 Analysis problems . 28

II Analysis Techniques for Petri Nets 31

3 Decision procedures 35

3.1 A decision procedure for Boundedness 35

3.2 Decision procedures for Coverability 37

3.2.1 Coverability graphs . 37

3.2.2 Rackoff’s theorem . 40

3.2.3 The backwards-reachability algorithm 43

3.3 Decision procedures for other problems 46

3.3.1 Reachability . 46

3.3.2 Deadlock-freedom . 47

3.3.3 Liveness . 50

3.4 Complexity . 50

3.5 Algorithms for bounded Petri nets 51

3

4 CONTENTS

4 Semi-decision procedures 53

4.1 Linear systems of equations and linear programming 53

4.2 The Marking Equation . 54

4.3 S- and T-invariants . 57

4.3.1 S-invariants . 57

4.3.2 T-invariants . 60

4.4 Siphons and Traps . 61

4.4.1 Siphons . 61

4.4.2 Traps . 63

5 Petri net classes with efficient decision procedures 67

5.1 S-Systems . 68

5.2 T-systems . 69

5.2.1 Liveness . 69

5.2.2 Boundedness . 70

5.2.3 Reachability . 71

5.2.4 Other properties . 72

5.3 Free-Choice Systems . 74

5.3.1 Liveness . 74

5.3.2 Boundedness . 76

5.3.3 Reachability . 80

CONTENTS 5

Sources

The main sources are:

J. Desel. Struktur und Analyse von Free-Choice-Petrinetzen. Deutscher

Universitäts Verlag, 1992.

J. Desel und J. Esparza. Free-choice Petri nets. Cambridge Tracts in

Theoretical Computer Science 40, Cambridge University Press, 1995.

The Petri net model of Peterson’s algorithm is taken from

E. Best. Semantics of Sequential and Parallel Programs. Prentice-Hall,

1996.

The action-reaction protocol is taken from

R. Walter. Petrinetzmodelle verteilter Algorithmen – Intuition und Be-

weistechnik. Dieter Bertz Verlag, 1996.

The train examples of Chapter 2 belong to the Petri net folklore. They were first

introduced by H. Genrich.

6 CONTENTS

Part I

Petri Nets: Syntax, Semantics,

Models

7

Chapter 1

Basic definitions

1.1 Preliminaries

Numbers

N, Z, Q and R denote the natural, rational, and real numbers.

Relations

Let X be a set and R ⊆ X × X a relation. R∗ denotes the transitive and reflexive

closure of R. R−1 is the inverse of R, that is, the relation defined by (x, y) ∈ R−1 ⇔
(y, x) ∈ R.

Sequences

A finite sequence over a set A is a mapping σ : {1, . . . , n} → A, denoted by the string

a1a2 . . . an, where ai = σ(i) for every 1 ≤ i ≤ n, or the mapping ǫ : ∅ → A, the

empty sequence. The length of σ is n and the length of ǫ is 0.

An infinite sequence is a mapping σ : IN → A. We write σ = a1a2a3 . . . with

ai = σ(i).
The concatenation of two finite sequences or of a finite and an infinite sequence is

defined as usual. Given a finite sequence σ, we denote by σω the infinite concatenation

σσσ

σ is a prefix of τ if σ = τ or σσ′ = τ for some sequence σ′.

The alphabet of a sequence σ is the set of elements of A occurring in σ. Given

a sequence σ over A and B ⊆ A, the projection or restriction σ|B is the result of

removing all occurrences of elements a ∈ A \B in σ.

Vectors and matrices

Let A = {a1, . . . , an} be a finite set and let K be one of N,Z,Q,R.

9

10 CHAPTER 1. BASIC DEFINITIONS

We represent a mapping X : A → K by the vector (X(a1), . . . , X(an)). We

identify the mapping X and its vector representation.

Given vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn), the (scalar) product X ·Y
is the number x1y1 + . . . + xnyn (we do not distinguish between row and column

vectors!). We write X ≥ Y to denote x1 ≥ y1 ∧ . . . ∧ xn ≥ yn,a nd X > Y to denote

x1 > y1 ∧ . . . ∧ xn > yn.

Let B = {b1, . . . , bm} be a finite set. A mapping C : A × B → K is represented

by the n×m matrix









C(a1, b1) C(a1, b2) · · · C(a1, bm)
C(a2, b1) C(a2, b2) · · · C(a2, bm)
· · · · · · · · · · · ·

C(an, b1) C(an, b2) · · · C(an, bm)









We also write C = (cij)i=1,...,n,j=1,...,m, where cij = C(ai, bj).
Let X = (x1, . . . , xm) be a vector and let C be a n×m matrix. The product C ·X

is the vector Y = (y1, . . . , yn) given by

y(i) = ci1x1 + . . .+ cimxm

and for X = (x1, . . . , xn) the product X · C is the vector Y = (y1, . . . , ym) given by

y(i) = c1ix1 + . . .+ cnixn

1.2 Syntax

Definition 1.2.1 (Net, preset, postset)

A net N = (S, T, F) consists of a finite set S of places (represented by circles), a

finite set T of transitions disjoint from S (squares), and a flow relation (arrows) F ⊆
(S × T) ∪ (T × S).

The places and transitions of N are called elements or nodes. The elements of F
are called arcs.

Given x ∈ S ∪ T , the set •x = {y | (y, x) ∈ F} is the preset of x and x• =
{y | (x, y) ∈ F} is the postset of x. For X ⊆ S ∪ T we denote •X =

⋃

x∈X

•x and

X• =
⋃

x∈X

x•.

Example. Let N = (S, T, F) be the net

S = {s1, . . . , s6}

T = {t1, . . . , t4}

F = {(s1, t1), (t1, s2), (s2, t2), (t2, s1),

(s3, t2), (t2, s4), (s4, t3), (t3, s3),

(s5, t3), (t3, s6), (s6, t4), (t4, s5)}

Figure 1.1 shows the graphical representation of N . For example we have •t2 =

1.2. SYNTAX 11

t2t1 t3 t4

s1 s3 s5

s2 s4 s6

Figure 1.1: Graphical representation of the net N

t3 t2 t3

t2

Subnets Non-subnets

s1

s4s4

t2

s3s3

s1

t1t1

Figure 1.2: Subnets and non-subnets of the net of Figure 1.1

{s2, s3} and •S = S• = T .

Remark: Nets with empty S, T or F are allowed!

Definition 1.2.2 (Subnet)

N ′ = (S′, T ′, F ′) is a subnet of N = (S, T, F) if

• S′ ⊆ S,

• T ′ ⊆ T , and

• F ′ = F ∩ ((S′ × T ′) ∪ (T ′ × S′)) (not F ′ ⊆ F ∩ ((S′ × T ′) ∪ (T ′ × S′)) !).

Figure 1.2 shows some subnets and non-subnets of the net of Figure 1.1.

Definition 1.2.3 (Path, circuit)

A path of a net N = (S, T, F) is a finite, nonempty sequence x1 . . . xn of nodes of N

12 CHAPTER 1. BASIC DEFINITIONS

such that (x1, x2), . . . , (xn−1, xn) ∈ F . We say that a path x1 . . . xn leads from x1 to

xn.

A path is a circuit if (xn, x1) ∈ F and (xi = xj)⇒ i = j for every 1 ≤ i, j ≤ n.

N is connected if (x, y) ∈ (F ∪ F−1)∗ for every x, y ∈ S ∪ T , and strongly

connected if (x, y) ∈ F ∗ for every x, y ∈ S ∪ T .

Remarks:

• Every net with 0 or 1 node is strongly connected!

• If N is strongly connected then it is also connected.

Proposition 1.2.4 Let N = (S, T, F) be a net.

(1) N is connected iff there are no two subnets (S1, T1, F1) and (S2, T2, F2) of N
such that

• S1 ∪ T1 6= ∅, S2 ∪ T2 6= ∅;

• S1 ∪ S2 = S, T1 ∪ T2 = T , F1 ∪ F2 = F ;

• S1 ∩ S2 = ∅, T1 ∩ T2 = ∅.

(2) A connected net is strongly connected iff for every (x, y) ∈ F there is a path

leading from y to x.

Proof. Exercise. �

1.3 Semantics

Definition 1.3.1 (Markings)

Let N = (S, T, F) be a net. A marking of N is a mapping M : S → IN. Given R ⊆ S
we write M(R) =

∑

s∈R

M(s). A place s is marked at M if M(s) > 0. A set of places

R is marked at M if M(R) > 0, that is, if at least one place of R is marked at M .

Instead of mappingsS → IN sometimes we use vectors. For this we fix a total order

on the places of N . With this convention we can represent a marking M : S → IN as a

vector of dimension |S|.
Markings are graphically represented by drawing black dots (“tokens”) on the

places.

Definition 1.3.2 (Firing rule, dead markings)

A transition is enabled at a marking M if M(s) ≥ 1 for every place s ∈ •t. If

t is enabled, then it can occur or fire, leading from M to the marking M ′ (denoted

M
t
−→M ′) given by:

M ′(s) =







M(s)− 1 if s ∈ •t \ t•

M(s) + 1 if s ∈ t• \ •t
M(s) otherwise

1.3. SEMANTICS 13

A marking is dead if it does not enable any transition.

Example 1.3.3 Let M be the marking of the net N in Figure 1.1 given by M(s1) =
M(s4) = M(s5) = 1 and M(s2) = M(s3) = M(s6) = 0. We denote this marking

by the vector (1, 0, 0, 1, 1, 0).
The marking enables transitions t1 and t3, because •t1 = {s1} and •t3 = {s4, s5}.

Transition t2 is not enabled, because M(s2) = 0. Transition t4 is not enabled, because

M(s6) = 0. We have

(1, 0, 0, 1, 1, 0)
t1−→ (0, 1, 0, 1, 1, 0)

(1, 0, 0, 1, 1, 0)
t3−→ (1, 0, 1, 0, 0, 1)

Definition 1.3.4 (Firing sequence, reachable marking)

Let N = (S, T, F) be a net and let M be a marking of N . A finite sequence σ =
t1 . . . tn is enabled at a marking M if there are markings M1,M2, . . . ,Mn such that

M
t1−→ M1

t2−→ M2
t3−→ . . .

tn−→ Mn. We write M
σ
−→ Mn. The empty sequence ǫ

is enabled at any marking and we have M
ǫ
−→M .

If M
σ
−→ M ′ for some markings M,M ′ and some sequence σ, then we write

M
∗
−→ M ′ and say that M ′ is reachable from M . [M〉 denotes the set of markings

that are reachable from M .

An infinite sequence σ = t1t2 . . . is enabled at a marking if there are markings

M1,M2, . . . such that M
t1−→M1

t2−→M2 −→ . . .

Example 1.3.5 Let N be the net of Figure 1.1 and let M = (1, 0, 0, 1, 1, 0) be a mark-

ing of N . We have

(1, 0, 0, 1, 1, 0)
t1−−→ (0, 1, 0, 1, 1, 0)

t3−−→ (0, 1, 1, 0, 0, 1)
↓ t2

(1, 0, 0, 1, 0, 1)
t4−−→ (1, 0, 0, 1, 1, 0)

So M enables the finite sequence t1 t3 t2 t4 and the infinite sequence (t1 t3 t2 t4)
ω.

Proposition 1.3.6 A (finite or infinite) sequence σ is enabled at M iff every finite prefix

of σ is enabled at M .

Proof. Easy exercise. �

The following simple lemma plays a fundamental role in many results about Petri

nets.

Lemma 1.3.7 [Monotonicity lemma]

Let M and L be two markings of a net.

(1) If M
σ
−→ M ′ for a finite sequence σ, then (M + L)

σ
−→ (M ′ + L) for every

marking L.

14 CHAPTER 1. BASIC DEFINITIONS

(2) If M
σ
−→ for an infinite sequence σ, then (M + L)

σ
−→ for every marking L.

Proof. (1): by induction on the length of σ.

Basis: σ = ǫ. ǫ is enabled at any marking.

Step: Let σ = τt (t transition) such that M
τ
−→ M ′′ t

−→ M ′. By induction hy-

pothesis (M + L)
τ
−→ (M ′′ + L). From the firing rule and M ′′ t

−→ M ′ we get

(M ′′ + L)
t
−→ (M ′ + L). So (M + L)

τt
−→ (M ′ + L).

(2): We show that every finite prefix of σ is enabled at M +L. The result then follows

from Proposition 1.3.6. By Proposition 1.3.6, every finite prefix of σ is enabled at M .

That is, for every finite prefix τ of σ there is a marking M ′ such that M
τ
−→ M ′. By

(1) we get (M + L)
τ
−→ (M ′ + L), and we are done. �

Definition 1.3.8 (Petri nets)

A Petri net, net system, or just a system is a pair (N,M0) where N is a connected net

N = (S, T, F) with nonempty sets of places and transitions, and an initial marking

M0 : S → IN. A marking M is reachable in (N,M0) or a reachable marking of

(N,M0) if M0
∗
−→M .

Definition 1.3.9 (Reachability graph)

The reachability graph G of a Petri net (N,M0) where N = (S, T, F) is the directed,

labeled graph satisfying:

• The nodes of G are the reachable markings of (N,M0).

• The edges of G are labeled with transitions from T .

• There is an edge from M to M ′ labeled by t iff M
t
−→M , that is, iff M enables

t and the firing of t leads from M to M ′.

The algorithm of Figure 1.3 computes the reachability graph. It uses two functions:

• enabled(M): returns the set of transitions enabled at M .

• fire(M, t): returns the marking M ′ such that M
t
−→M ′.

The set Work may be implemented as a stack, in which case the graph will be con-

structed in a depth-first manner, or as a queue for breadth-first. Breadth first search will

find the shortest transition path from the initial marking to a given (erroneous) marking.

Some applications require depth first search.

1.3. SEMANTICS 15

REACHABILITY-GRAPH((S, T, F,M0))
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work : set := {M0};
3 while Work 6= ∅
4 do selectM from Work ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 if M ′ /∈ V
9 then V := V ∪ {M ′}

10 Work := Work ∪ {M ′};
11 E := E ∪ {(M, t,M ′)};
12 return (V,E, v0)

Figure 1.3: Algorithm for computing the reachability graph

16 CHAPTER 1. BASIC DEFINITIONS

Chapter 2

Modelling with Petri nets

2.1 A buffer of capacity n

We model a buffer with capacity for n items. Figure 2.1 shows the Petri net for n = 3.

The model consists of n cells, each of them with capacity for one item. The addition

s1 s5

Cell-1-full Cell-2-full Cell-3-full

Cell-3-emptyCell-2-emptyCell-1-empty

t3t2t1

s6s4s2

t4

s3

Figure 2.1: A 3-buffer

of a new item is modeled by the firing of t1. The firing of transition ti models moving

the item in cell i− 1 to cell i. Firing tn+1 models removing one item. Observe that the

buffer is concurrent: there are reachable markings at which transitions t1 and tn+1 can

occur independently of each other, that is, an item can be added while another one is

being removed.

Figure 2.2 shows the reachability graph of the buffer with capacity 3. By inspection

of the reachability graph we can see that the following properties hold:

• Consistency: no cell is simultaneously empty and full (that is, no marking puts to-

kens on si and si+1 for i = 1, 2, 3).
• 1-boundedness: every reachable marking puts at most one token in a given place.
• Deadlock freedom: every reachable marking has at least one successor marking.

Even more: every cell can always be filled and emptied again (every transition can

occur again).

17

18 CHAPTER 2. MODELLING WITH PETRI NETS

(10 10)

10 10)

(10 10 10)

(01

01

10) (10 10

10

(10

(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

Figure 2.2: Reachability graph of the 3-buffer

• Capacity 3: the buffer has indeed capacity 3, that is, there is a reachable marking

that puts one token in s2, s4, s6.

• The initial marking is reachable from any reachable marking (that is, it is always

possible to empty the buffer).

• Between any two reachable markings there is a path of length at most 6.

2.2 Train tracks

Four cities are connected by unidirectional train tracks building a circle. Two trains

circulate on the tracks. Our task is to ensure that it will never be the case that two trains

occupy the same track.

Figure 2.3 shows a solution of the problem modeled as a Petri net. the four tracks

are modeled by places s1, . . . , s4. A token on si means that there is train in the i-th
track.

The four control places l1, . . . , l4 guarantee that no reachable marking puts more

than one token on si. This property can be proven by means of the reachability graph

shown in Figure 2.4. Since every reachable marking puts at most one token on a place,

we denote a marking by the set of places marked by it. For instance, we denote by

{l1, s2, l3, s4} the marking that puts a token on l1, s2, l3 and s4.

Consider now a slightly different system. We have 8 cities connected in a circuit,

and three trains use the tracks. To increase safety, we have to guarantee that there

2.2. TRAIN TRACKS 19

t1

s2

t2t3

s4

t4

s1

l3

l1

s3

l4 l2

Figure 2.3: Train tracks (first version)

s2 l3

s2 l3

s2 l3

l2 s3

l2 s3

s3 l2

t3

t4

t4

t3t1

t1

t2

t2

{l1 s4}

{l1 s4} {s1 l4}

{s1 l4}

{l1 l4} {s1 s4}

Figure 2.4: Reachability graph of the Petri net of Figure 2.3

20 CHAPTER 2. MODELLING WITH PETRI NETS

Figure 2.5: Train tracks (second version)

always is at least one empty track between any two trains.

The Petri net of Figure 2.5 is a solution of the problem: The reader can construct

the reachability graph and show that the desired property holds. However, the graph is

pretty large!

2.3 Dining philosophers

Four philosophers sit around a round table. There are forks on the table, one between

each pair of philosophers. The philosophers want to eat spaghetti from a large bowl

in the center of the table (see the top of Figure 2.6). Unfortunately the spaghetti is

of a particularly slippery type, and a philosopher needs both forks in order to eat it.

The philosophers have agreed on the following protocol to obtain the forks: Initially

philosophers think about philosophy, when they get hungry they do the following: (1)

take the left fork, (2) take the right fork and start eating, (3) return both forks simul-

taneously, and repeat from the beginning. Figure 2.6 shows a Petri net model of the

system.

Two interesting questions about this systems are:

• Can the philosophers starve to death (because the system reaches a deadlock)?

• Will an individual philosopher eventually eat, assuming she wants to?

2.4 A logical puzzle

A man is travelling with a wolf, a goat, and a cabbage. The four come to a river that

they must cross. There is a boat available for crossing the river, but it can carry only

the man and at most one other object. The wolf may eat the goat when the man is not

around, and the goat may eat the cabbage when unattended (see Figure 2.7)

2.4. A LOGICAL PUZZLE 21

4

1 2

3

fork

fork

fork fork

l1 ✛
✠

❄
r1✲ ✲

✻

b1

✻

✛

❘

■

thinking

eating

r2✛
❘

✻

l2✲ ✲

✻

b2

❄

✛

✠

✒

eating

thinking

l3✲

✒

✻

r3✛ ✛
❄

b3
❄

✲

■

❘

thinking

eating

r4 ✲

■

❄

l4✛ ✛
❄

b4

✻

✲

✒

✠

eating

thinking

Figure 2.6: Petri net model of the dining philosophers

22 CHAPTER 2. MODELLING WITH PETRI NETS

Can the man bring everyone across the river without endangering the goat or the

cabbage? And if so, how?

We model the system with a Petri net. The puzzle mentions the following objects:

Man, wolf, goat, cabbage, boat. Both can be on either side of the river. It also mentions

the following actions: Crossing the river, wolf eats goat, goat eats cabbage.

Objects and their states are modeled by places. (We can omit the boat, because it is

always going to be on the same side as the man.) Actions are modeled by transitions.

Figure 2.7 shows the transitions for the three actions.

2.5 Peterson’s algorithm

Peterson’s algorithm is a well-known solution to the mutual exclusion problem for two

processes.

var m1,m2 : {false, true} (init false);

hold : {1, 2};

while true do

m1 := true;
hold := 1;
await(¬m2 ∨ hold = 2);
(critical section);

m1 := false;
od

while true do

m2 := true;
hold := 2;
await(¬m1 ∨ hold = 1);
(critical section);

m2 := false;
od

The Petri net of Figure 2.8 models this algorithm. The variable mi is modeled by

the places mi = true and mi = false . A token on mi = true means that at the

current state of the program (marking) the variable mi has the value true (so the Petri

net must satisfy the property that no reachable marking puts tokens on both mi = true

and mi = false at the same time). Variable hold is modeled analogously.

A token on p4 (q4) indicates that the left (right) process is in its critical section.

Mutual exclusion holds if no reachable marking puts a token on p4 and q4. The Petri

net has 20 reachable markings.

2.6 The action/reaction protocol

Two agents must repeatedly exchange informations. When an agent requests an infor-

mation from the other one, it must wait for an answer before proceeding. The task is to

design a protocol for the exchanges. In particular, the protocol must guarantee that it

is not possible to reach a situation in which both processes are waiting from an answer

from the other one.

A first attempt at a solution is shown in Figure 2.9. Requests are modeled by the

Action transitions, and replies by the Reaction transitions. However, this solution can

reach a deadlock: both processes can issue a request simultaneously, after which they

2.6. THE ACTION/REACTION PROTOCOL 23

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WLR

MLR

CLR

GLR

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WRL

MRL

CRL

GRL

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WL

ML

WGL WGR

CGL CGR

Figure 2.7: Transitions modelling the actions of the puzzle

24 CHAPTER 2. MODELLING WITH PETRI NETS

q4

q3

v1

v4

v3

q2

v6

q1

u1u6

u3

u4

m1 = t

m2 = fp1

p2

p3

p4

hold = 2

m2 = t

u5

hold = 1

v5

u2 v2

m1 = f

Figure 2.8: Petri net model of Peterson’s algorithm

wait forever for an answer. We call such a situation a crosstalk. Figure 2.10 shows a

second attempt. Now processes can detect that a crosstalk has taken place. If a process

detects a crosstalk, it answers the request of its partner, and then continues to wait for an

answer to its own request. This solution has no deadlocks (prove it!), but it exhibits the

following problem: a non-cooperative process can always get answers to its requests,

without ever answering any request from its partner. The solution is deadlock free, but

unfair. The third attempt (Figure 2.11) is fair. If a process detects a crosstalk, then it

answers the request of its partner, as before, but then it moves to a state in which it is

only willing to receive an answer to its own question. Unfortunately, the system has

again a deadlock (can you find it?).

The final attempt (Figure 2.12) is both deadlock-free and fair. The protocol works

in rounds. A “good” round consists of a request and an answer. In a “bad” round both

processes issue a request and they reach a crosstalk situation. Such a round continues as

follows: both processes detect the crosstalk, send each other an “end-of-round” signal,

wait for the same signal from their partner, and then move to their initial states.

The solution is not perfect. In the worst case there are only bad rounds, and no

requests are answered at all.

2.7 Variants of the main model

Definition 2.7.1 (Nets with place capacities)

A net with capacities N = (S, T, F,K) consists of a net (S, T, F) and a mapping

K : S → IN.

A transition t is enabled at a marking M of N if

2.7. VARIANTS OF THE MAIN MODEL 25

wait-l

action-l

reaction-l

answer-rl

request-rl

request-lr

reaction-r

done-r

action-r

wait-r

answer-lr

done-l

idle-l idle-r

Figure 2.9: First attempt

ct-rct-l i-r

r-r

d-r

a-r

w-rd-l

r-l

i-l

a-l

w-l

a-rl

r-lr

r-rl

a-lr

Figure 2.10: Second attempt

26 CHAPTER 2. MODELLING WITH PETRI NETS

ct-l

ct-r

i-l

a-l

w-l

r-l

d-l

i-r

a-rl

a-lr

r-lr

r-rl

d-r

r-r

a-r

w-r

Figure 2.11: Third attempt

end-of-round-l

end-of-round-r

i-r

r-l

i-l

a-l

w-r

d-r

r-r

a-r

w-l

d-l

r-lr

ct-l ct-r

a-lr

r-rl

a-rl

Figure 2.12: Last attempt

2.7. VARIANTS OF THE MAIN MODEL 27

Ri Si

ri

si

m

m

wj

Vj

vj

m

Wj

Ri: Process i reads

Process i idleSi:

ri: Process i starts reading

si: Process i stops reading

Wi:

Vj :

Process j writes

Process j idle

wj : Process j starts writing

vj : Process j stops writing

m readers n writers

Figure 2.13: Readers and writers

– M(s) ≥ 1 for every place s ∈ •t and

– M(s) < K(s) for every place s ∈ t• \ •t
The notions of firing, Petri net with capacities, etc. are defined as in the capacity-free

case.

Definition 2.7.2 (Nets with weighted arcs)

A net with weighted arcs N = (S, T,W) consists of two disjoint sets of places and

transitions and a weight function W : (S×T)∪(T×S)→ IN. A transition t is enabled

at a marking M of N if M(s) ≥ W (s, t) for every s ∈ S. If t is enabled then it can

occur leading to the marking M ′ defined by

M ′(s) = M(s) +W (t, s)−W (s, t)

for every place s. Other notions are defined as in the standard model.

The Petri net with weighted arcs of Figure 2.13 models a solution to the “readers

and writers” problem. A set of processes has access to a database. Processes can read

concurrently, but a process can only write if no other processes reads nor writes.

Exercise: Modify the Petri net so that reading processes can not indefinitely pre-

vent another process from writing.

Definition 2.7.3 (Nets with inhibitor arcs)

A net with inhibitor arcs N = (S, T, F, I) consists of two disjoint sets of places and

transitions, a set F ⊆ (S×T)∪ (T ×S) of arcs, and a set I ⊆ S×T , disjoint with F ,

of inhibitor arcs. A transition t is enabled at a marking M of N if M(s) > 0 for every

28 CHAPTER 2. MODELLING WITH PETRI NETS

place s such that (s, t) ∈ F , and M(s) = 0 for every place s such that (s, t) ∈ I . If

t is enabled then it can occur leading to the marking M ′, defined as for standard Petri

nets.

Definition 2.7.4 (Nets with reset arcs)

A net with reset arcs N = (S, T, F,R) consists of two disjoint sets of places and

transitions, a set F ⊆ (S × T) ∪ (T × S) of arcs, and a set R ⊆ S × T , disjoint with

F , of reset arcs. A transition t is enabled at a marking M of N if M(s) > 0 for every

place s such that (s, t) ∈ F ∪R. If t is enabled then it can occur leading to the marking

obtained after the following operations:

• Remove one token from every place s such that (s, t) ∈ F .

• Remove all tokens from every place s such that (s, t) ∈ R.

• Add one token to every place s such that (t, s) ∈ F .

2.8 Analysis problems

We introduce a number of properties we are interested in. We assume that nets have at

least one place and one transition.

Definition 2.8.1 (System properties)

Let (N,M0) be a Petri net.

(N,M0) is deadlock free if every reachable marking enables at least one transition

(that is, no reachable marking is dead).

(N,M0) is live if for every reachable marking M and every transition t there is a

marking M ′ ∈ [M〉 that enables t. (Intuitively: every transition can always fire again).

(N,M0) is bounded, if for every place s there is a number b ≥ 0 such that

M(s) ≤ b for every reachable marking M . M0 is a bounded marking of N if (N,M0)
is bounded. The bound of a place s of a bounded Petri net (N,M0) is the number

max{M(s) |M ∈ [M0〉}

(N,M0) is b-bounded if every place has bound b.

In these notes we study the following problems:

• Deadlock freedom: is a given Petri net (N,M0) deadlock-free?

• Liveness: is a given Petri net (N,M0) live?

• Boundedness: is a given Petri net (N,M0) bounded?

• b-boundedness: given b ∈ N and a Petri net (N,M0), is (N,M0) b-bounded?

• Reachability: given a Petri net (N,M0) and a markingM ofN , is M reachable?

• Coverability: given a Petri net (N,M0) and a marking M of N , is there a

reachable marking M ′ ≥M?

2.8. ANALYSIS PROBLEMS 29

There are some simple connections between these problems:

Proposition 2.8.2

(1) Liveness implies deadlock freedom.

(2) If (N,M0) is bounded then there is a number b such that (N,M0) is b-bounded.

(3) If (N,M0) is bounded, then it has finitely many reachable markings.

Proof. (1) follows immediately from the definitions. (2) and (3) follow from the defi-

nitions and from the fact that a Petri net has finitely many places. �

Sometimes we also use the following notion

Definition 2.8.3 (Well-formed nets)

A net N is well formed if there is a marking M0 such that the Petri net (N,M0) is live

and bounded.

and consider the following problem

• Well-formedness: is a given net well formed?

30 CHAPTER 2. MODELLING WITH PETRI NETS

Part II

Analysis Techniques for Petri

Nets

31

33

Chapter 3 shows (sometimes without proofs) that Deadlock-freedom, Liveness,

Boundedness, b-Boundedness, Coverability, and Reachability are all decidable. The

decision procedures for these problems have high complexity, but, at the same time,

results of complexity theory show that no efficient algorithms exist for them.

Since better runtimes are often required in many practical applications, we often

use algorithms that can be applied to arbitrary Petri nets, but sometimes answer “don’t

know”, or do not terminate. We call them semi-decision procedures. We also use faster

decision procedures for special Petri net classes.

Chapter 4 is devoted to semi-decision procedures. Chapter 5 presents efficient de-

cision algorithms for three classes: S-nets, T -nets, and Free-Choice nets

34

Chapter 3

Decision procedures

3.1 A decision procedure for Boundedness

The b-Boundednesss problem is clearly decidable: if the input Petri net (N,M0) has

n places, then the number of b-bounded markings of N is nb+1. So we can decide

b-Boundedness by constructing the reachability graph of (N,M0) until either the con-

struction terminates, or we find a reachable marking that is not b-bounded.

The same idea gives a semi-decision procedure for Boundedness: again, we con-

struct the reachability graph. If the input (N,M0) is bounded, then there are finitely

many reachable markings, the construction terminates, and we can return “bounded”.

However, if the net is unbounded then this procedure does not terminate.

We now give a decision procedure for Boundedeness. We need two lemmas. The

first one is a simple adaptation of König’s Lemma; the second is known as Dickson’s

Lemma.

Lemma 3.1.1 (Königs lemma) Let G = (V,E) be the reachability graph of a Petri

net (N,M0). If V is infinite, then G contains an infinite simple path.

Proof. Assume V = [M0〉 is infinite. For every reachable marking M there is a

simple path πM from M0 to M . Since M0 has finitely many immediate successors

(at most one for each transition of N), and each πM visits one of them, at least one

immediate successor M1 of M0 has infinitely many successors in (V \ {M0}, E), that

is, [M1〉 \ {M0} is infinite. Iterating this argument we construct an infinite simple path

M0M1M2 · · · . �

Lemma 3.1.2 (Dickson’s lemma) For every infinite sequence A1A2A3 . . . of vectors

of Nk there is an infinite sequence i1 < i2 < i3 . . . of indices such that Ai1 ≤ Ai2 ≤
Ai3

Proof. By induction on k
Basis: k = 1. Then the elements of A are just numbers. The set {A1, A2, · · · } has

35

36 CHAPTER 3. DECISION PROCEDURES

a minimum, say c1. Choose i1 as some index (say, the smallest), such that Ai1 = c1.

Consider now the set {Ai1+1, Ai1+2, · · · }. The set has a minimum c2, which by defi-

nition satisfies c1 ≤ c2. Choose i2 as the the smallest index i2 > i1 such that Ai2 = c2.

Etc.

Step: k > 1. Given a vector Ai, let A′
i be the vector of dimension k − 1 consisting

of the first k − 1 components of Ai, and let ai be the last component of Ai. We write

Ai = (A′
i | ai).

Since the vectors of A′
1A

′
2A

′
3 · · · have dimension k − 1, by induction hypothesis

there is an infinite subsequence A′
i1
≤ A′

i2
≤ A′

i3
· · · . Consider now the sequence

ai1ai2ai3 · · · . By induction hypothesis there is a subsequence aj1 ≤ aj2 ≤ aj3 · · · .
But then we have Aj1 ≤ Aj2 ≤ Aj3 · · · , and we are done. �

Remark: Lemma 3.1.2 shows that the partial order≤⊆ Nk×Nk is a well-quasi-order.

Given a set A, and a partial order �⊆ A × A, we say that � is a well-quasi-order if

every infinite sequence a1a2a3 · · · ∈ Aω contains an infinite chain ai1 � ai2 � · · · . In

the next section we examine well-quasi-orders in more detail.

We use König’s Lemma and Dickson’s lemma to provide the following characteri-

zation of unboundedness.

Theorem 3.1.3 (N,M0) is unbounded iff there are markings M and L such that L 6=

0 and M0
∗
−→M

∗
−→ (M + L)

Proof. (⇐) : Assume there are such markings M,L. By the Monotonicity Lemma we

have

M1
∗
−→ (M1 + L)

∗
−→ (M1 + 2 · L)

∗
−→ . . .

So the set [M0〉 of reachable markings is infinite and (N,M0) is unbounded.

(⇒) Assume (N,M0) is unbounded. Then the set [M0〉 of reachable markings is in-

finite. By Königs lemma there is an infinite firing sequence M0
t1−→ M1

t1−→ M2 . . .
that never visits a marking twice. By Dickson’s Lemma there are Mi and Mj such that

M0
∗
−→Mi

∗
−→Mj and Mi ≤Mj . Let M ≡Mi and L ≡Mj −Mi. �

Theorem 3.1.4 Boundedness is decidable.

Proof. We give an algorithm that always terminates and always returns the correct

answer: “ bounded” or “unbounded”. The algorithm explores the reachability graph

of the net using breadth-first search. After adding a new marking M ′, the algorithm

checks if the part of the graph already constructed contains a sequence M0
∗
−→M

∗
−→

M ′ such that M ≤ M ′ (and M 6= M ′, because M ′ is new). The algorithm terminates

if it finds such a sequence, in which case it returns “unbounded”, or if it cannot add any

new marking, in which case it returns “bounded”.

If (N,M0) is bounded, then by Theorem 3.1.3 the algorithm never finds a new

marking M ′ satisfying the condition above. So, since the Petri net has only finitely

3.2. DECISION PROCEDURES FOR COVERABILITY 37

many reachable markings, the algorithm terminates because it cannot find any new

marking, and correctly returns “bounded”.

If (N,M0) is unbounded, then there are infinitely many reachable markings, and

the algorithm cannot terminate because it runs out of reachable markings. On the other

hand, by Theorem 3.1.3 the algorithm eventually finds markings M ′ and M as above,

and so it correctly answers “unbounded”. �

3.2 Decision procedures for Coverability

The reachability graph of a Petri net can be infinite, in which case the algorithm for

computing the reachability graph will not terminate. Therefore, the algorithm cannot

decide that a given marking is not coverable. In this section we introduce several

decision procedures that overcome this problem.

3.2.1 Coverability graphs

We show how to construct a coverability graph of a Petri net (N,M0). The coverability

graph is always finite, and satisfies the following property: a marking M of (N,M0)
is coverable iff some node M ′ of the coverability graph of (N,M0) covers M , i.e.,

satisfies M ′ ≥M .

We introduce a new symbol ω. Intuitively, it stands for an arbitrarily large number.

We extend the arithmetic on natural numbers with ω as follows. For all n ∈ N:

n+ ω = ω + n = ω,

ω + ω = ω,

ω − n = ω,

0 · ω = 0
n ≥ 1⇒ n · ω = ω · n = ω,

n ≤ ω and ω ≤ ω.

Observe that ω − ω remains undefined, but we will not need it.

We extend the notion of markings to ω-markings. An ω-marking of a net N =
(S, T, F) is a mapping M : S → N ∪ {ω}. Intuitively, in an ω-marking, each place s
has either a certain number of tokens or “arbitrarily many” tokens.

The enabledness condition and the firing rule neatly extend to ω-markings with

the extended arithmetic rules: recall that a transition t is enabled at a marking M if

M(s) > 0 for every s ∈ •t. Now M(s) > 0 may hold because M(s) = ω. Further,

recall that if t is enabled, then it can fire, leading from M to the marking M ′ given by:

M ′(s) =







M(s)− 1 if s ∈ •t \ t•

M(s) + 1 if s ∈ t• \ •t
M(s) otherwise

If s ∈ •t ∪ t• and M(s) = ω, then we have M ′(s) = ω. That is, if a place contains

ω tokens, then firing a transition will not change its number of tokens, even if the

transition is connected with an arc to the place.

38 CHAPTER 3. DECISION PROCEDURES

M t1 t2 ... tn M’ t1 t2 ... tn M’’= =

∆Μ ∆Μ
Μ+∆Μ Μ+2∆Μ

...

=
...

Figure 3.1: Pumping tokens.

COVERABILITY-GRAPH((S, T, F,M0))
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work : set := {M0};
3 while Work 6= ∅
4 do select M fromWork ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 M ′ := AddOmegas(M, t,M ′, V, E);
9 if M ′ /∈ V

10 then V := V ∪ {M ′}
11 Work := Work ∪ {M ′};
12 E := E ∪ {(M, t,M ′)};
13 return (V,E, v0);

ADDOMEGAS(M, t,M ′, V, E)
1 for M ′′ ∈ V
2 do if M ′′ < M ′ and M ′′ ∗

−→E M
3 then M ′ := M ′ + ((M ′ −M ′′) · ω);
4 return M ′;

Figure 3.2: Algorithm for the construction of the coverability graph

Assume M ′ ∈ [M〉 and M ≤ M ′. Then there is some sequence of transitions

t1t2 . . . tn such that M
t1t2...tn−−−−−−→M ′. By the Monotonicity Lemma, there is a marking

M ′′ with M ′ t1t2...tn−−−−−−→M ′′. Further, if we denote ∆M := M ′ − M , then M ′′ =
M ′+∆M = M +2∆M (see Figure 3.1). By firing the transition sequence t1t2 . . . tn
repeatedly we can “pump” an arbitrary number of tokens to all the places s for which

∆M(s) > 0.

The main idea for the construction of the coverability graph is to replace the mark-

ing M ′ by the ω-marking M ′ + ω · ∆M . The algorithm is shown in Figure 3.2. The

following notations are used in the AddOmegas subroutine:

• M ′′−→E M iff (M ′′, t,M) ∈ E for some t ∈ T .

• M ′′ ∗
−→E M iff ∃n ≥ 0: ∃M0,M1, . . . ,Mn : M

′′ = M0 →E M1 →E M2 →E

· · · →E Mn = M .

Observe that COVERABILITY-GRAPH is very similar to REACHABILITY-GRAPH,

it just adds a call to subroutine AddOmegas(M, t,M ′, V, E). Line 3 causes all places

whose marking in M ′ is strictly larger than in the “parent” M ′′ to contain ω, while

markings of other places remain unchanged.

We show that COVERABILITY-GRAPH terminates, and that a markingM of (N,M0)
is coverable iff some node M ′ of the coverabilitygraph of (N,M0) covers M , i.e., sat-

isfies M ′ ≥M

3.2. DECISION PROCEDURES FOR COVERABILITY 39

Theorem 3.2.1 COVERABILITY-GRAPH terminates.

Proof. Assume that COVERABILITY-GRAPH does not terminate. We derive a con-

tradiction. If COVERABILITY-GRAPH does not terminate, then it constructs an infinite

graph. Since every node of the graph has at most |T | successors, by König’s lemma

the graph contains an infinite path Π = M1M2 If an ω-marking Mi of Π satisfies

Mi(p) = ω for some place p, then Mi+1(p) = Mi+2(p) = . . . = ω. So Π con-

tains a marking Mj such that all markings Mj+1,Mj+2, . . . have ω’s at exactly the

same places as Mj . Let Π′ be the suffix of Π starting at Mj . Consider the projection

Π′′ = mjmj+1 . . . of Π′ onto the non-ω places. Let n be the number of non-ω places.

Π′′ is an infinite sequence of distinctn-tuples of natural numbers. By Dickson’s lemma,

this sequence contains markings Mk,Ml such that k < l and Mk ≤Ml. This is a con-

tradiction, because, since Mk 6= Ml, when executing AddOmegas(Ml−1, t,Ml, V, E)
the algorithm adds at least one ω to Ml−1. �

For the rest of the proof we start with a lemma.

Lemma 3.2.2 For every ω-marking M ′ added by the algorithm to V and for every

k > 0, there there is a reachable marking M ′
k satisfying M ′

k(s) = M ′(s) for every

place s such that M ′(s) ∈ N, and M ′
k(s) > k for every place s such that M ′(s) = ω.

Proof. We prove that if all ω-markings added so far to V satisfy the property, then the

next one also does. Assume the algorithm currently explores markingM and transition

t, and let M
t
−→M1. By induction hypothesis, for every k > 0, there there is a reach-

able markingMk satisfying Mk(s) = M(s) for every place s such that M(s) ∈ N, and

Mk(s) > k for every place s such that M(s) = ω. If AddOmegas does not add any

ωs, then we can take M ′
k as the result of firing t from Mk. Assume AddOmegas finds

an ω-marking M ′′ such that M ′′ ∗
−→E M

t
−→M1. Then there is a sequence σ such that

M ′′ σ
−→M

t
−→M1. By induction hypothesis, for every k > 0, there is a reachable

marking M ′′
k satisfying M ′′

k (s) = M ′′(s) for every place s such that M ′′(s) ∈ N, and

M ′′
k (s) > k for every place s such that M ′′(s) = ω. Then, starting from a sufficiently

large k, the marking M ′′
k enables σt (for instance, take k = |σt|, since a σt can remove

at most |σt| tokens from a place). We can then choose Mk as the marking satisfying

M ′′
k

σt
−−→M ′

k.

If AddOmegas finds several ω-markings M ′′ such that M ′′ ∗
−→E M

t
−→M1, we re-

peat the argument above. �

Theorem 3.2.3 Let (N,M0) be a Petri net and let M be a marking of N . There is

a reachable marking M ′ ≥ M iff the coverability graph of (N,M0) contains an ω-

marking M ′′ ≥M .

Proof. (⇒): Assume there is a reachable marking M ′ ≥ M . Then some firing

sequence

M0
t1−−→M1

t2−−→M2 · · ·Mn−1
tn−−→M ′

40 CHAPTER 3. DECISION PROCEDURES

of (N,M0) leads from M0 to M ′. By the definition of the algorithm, the coverability

graph contains a path

M0
t1−−→M ′

1
t2−−→M ′

2 · · ·M
′
n−1

tn−−→M ′
n

such that M ′
i ≥Mi for every 1 ≤ i ≤ n. Take M ′′ = M ′

n.

(⇐): Assume the coverability graph of (N,M0) contains an ω-marking M ′′ ≥M .

By Lemma 3.2.2, there is a reachable marking M ′′
k satisfying M ′′

k (s) = M ′′(s) for

every place s such that M ′′(s) ∈ N, and M ′′
k (s) > k for every place s such that

M ′′(s) = ω. Take k larger than any of the components of M , and set M ′ = M ′′
k . Then

clearly M ′ ≥M . �

Size of the coverability graph

Let Bn be the set of bounded Petri nets with k places {s1, . . . , sk} and an initial mark-

ing putting only one token on s1 and zero tokens elsewhere (observe that Bn is essen-

tially finite, because the maximal number of transitions with different presets of post-

sets is 22k). It has been proved that the function giving for each n ≥ 1 the maximal

size of the reachability graph of the nets in Bn is not bounded by any primitive re-

cursive function. Since for bounded Petri nets the reachability and coverability graphs

coincide, the same result holds for the coverability graphs.

3.2.2 Rackoff’s theorem

The coverability graph allows us to answer coverability of any marking. However,

Coverability asks whether a particular marking M can be covered. The question is

whether we can give a bound on the size of the fragment of the coverability graph we

need to construct to find an ω-marking covering M .

Definition 3.2.4 (Integer nets) Let N = (S, T, F) be a net. A generalized marking

of N (g-marking for short) is a mapping G : S → Z. An integer net is a pair (N,G0)
where N is a net and G0 is a g-marking. A g-marking G enables all transitions, and

the occurrence of t at G leads to the marking G′ given by

G′(s) =







G(s)− 1 if s ∈ •t \ t•

G(s) + 1 if s ∈ t• \ •t
G(s) otherwise

We denote by G
t
→֒ G′ that firing t at G yields to G′.

An integer firing sequence of an integer net is a sequenceG0
t1
→֒ G1

t2
→֒ · · ·

tn
→֒ Gm.

Clearly, every Petri net is also an integer net, and every firing squence is also an

integer firing sequence, but the converse does not hold.

In the rest for the section we fix a net N with places {s1, . . . , sk}, and identify

g-markings with vectors of Zk .

3.2. DECISION PROCEDURES FOR COVERABILITY 41

Definition 3.2.5 Let G ∈ Zk be a g-marking of N and let 0 ≤ i ≤ k. We say that

G is i-natural if its first i-components are natural numbers, i.e., if G(j) ≥ 0 for every

1 ≤ j ≤ i. If moreover G(j) < r for every 1 ≤ j ≤ i, then we say that G is

(i, r)-natural.

An integer sequence σ = G0
t1
→֒ · · ·

tm
→֒ Gm is i-natural (respectively (i, r)-

natural) if every generalized marking of σ is i-natural (respectively (i, r)-natural).

Given a g-marking G ∈ Zk, we say that σ is (i, G)-covering if Gm(j) ≥ G(j) for

every 1 ≤ j ≤ i.

Intuitively, G is i-natural if its restriction to the first i places is a “normal” marking,

and σ is i-natural if its restriction to the first i places is a “normal” firing sequence.

So, in particular, deciding if M is coverable in a Petri net (N,M0) with k places is

equivalent to deciding if (N,M0) has a (k,M)-covering and k-natural sequence.

We prove the following result:

Theorem 3.2.6 Let n = max(1, |G(1)|, . . . |G(k)|). For every G0 ∈ Zk, if (N,G0)
has a (k,G)-covering, k-natural sequence, then it has one of length at most (n +

1)(2k)
k

.

This upper bound is not very precise. The only important aspect is the double

exponential dependency on k, the number of places of the net. The proof follows

easily from the following lemma, which gives a tighter bound, but in the form of a

recursively defined function:

Lemma 3.2.7 For every G0 ∈ Zk and for every 1 ≤ i ≤ k, if (N,G0) has an (i, G)-
covering, i-natural sequence, then it has one of length at most f(i), where f is induc-

tively defined as follows:

• f(0) = 1, and

• f(i) = (nf(i− 1))i + f(i− 1) for every 1 ≤ i ≤ k.

Proof The proof is by induction on i.
Base: i = 0. Follows from the fact that the sequence σ = G0 is (0, G)-covering and

0-natural.

Step: i > 0. Assume (N,G0) has an (i, G)-covering, i-natural sequence. We consider

two cases:

Case 1: (N,G0) has an (i, G)-covering, (i, nf(i− 1))-natural sequence.

Assume the sequence is

σ = G0
t1
→֒ · · ·

tm
→֒ Gm

and assume further that it has minimal length.

We claim that G0, G1, . . . , Gm are pairwise different in the first i places. Assume

the contrary: there exist α < β such that Gα(j) = Gβ(j) for every 1 ≤ j ≤ i. Then

the sequence

σ′ = G0
t1
→֒ · · ·

tα−1

−−−−→Gα

tβ+1

→֒ G′
β+1

tβ+2

→֒ · · ·
tm
→֒ G′

m

42 CHAPTER 3. DECISION PROCEDURES

is also (i, G)-covering and (i, nf(i − 1))-natural, contradicting the minimality of σ.

This proves the claim.

Since σ is (i, nf(i − 1))-natural, for every g-marking G′ appearing in σ we have

0 ≤ G′(j) < nf(i−1) for every 1 ≤ j ≤ i. There are at most (nf(i−1))i g-markings

G′ different in the first i places satisfying 0 ≤ G′(j) < nf(i− 1). By the claim above

the length of σ is at most (nf(i− 1))i.

Case 2: (N,G0) has no (i, G)-covering, (i, nf(i− 1))-natural sequence.

Then there is an (i, G)-covering, i-natural sequence that is not (i, nf(i − 1))-natural.

Let this sequence be

σ = G0
t1
→֒ G1

t2
→֒ · · ·Gm−1

tm
→֒ Gm

Let Gα+1 be the first vector of σ that is not (i, nf(i − 1))-natural. Without loss of

generality, we can assume Gα+1(i) ≥ nf(i− 1). Then the prefix

G0
t1
→֒ · · ·

tα
→֒ Gα

is (i, Gα)-covering and (i, nf(i− 1))-natural. As in the previous case, we can assume

α ≤ (nf(i− 1))i.

Since

Gα+1

tα+1

→֒ · · ·
tm
→֒ Gm

is an (i − 1, G)-covering and (i − 1)-natural sequence of (N,Gα+1), by induction

hypothesis there exists another (i − 1, G)-covering and (i− 1)-natural sequence

Gα+1
u1

→֒ H1
u2

→֒ · · ·
uℓ
→֒ Hℓ

of (N,Gα+1) of length at most f(i−1), that is, ℓ ≤ f(i−1). Since Gα+1(i) ≥ nf(i−
1), and a sequence of length f(i − 1) can remove at most (f(i − 1)− 1) tokens from

the place si, after the execution of the new sequence we still have Hℓ(si) ≥ n ≥ G(si)
and Hℓ(si) ≥ 0. So the sequence

σ′ = G0
t1
→֒ · · ·

tα
→֒ Gα

tα+1

→֒ Gα+1
u1

→֒ H1
u2

→֒ · · ·
uℓ

→֒ Hℓ

is an (i, G)-covering and i-natural sequence of (N,G0) of length at most (nf(i−1))i+
f(i− 1). �

We can now proceed to prove Theorem 3.2.6:

Proof of Theorem 3.2.6. Define g(0) = n + 1 and g(i) = (g(i − 1))2k for every

1 ≤ i ≤ k. Observe that g(i) ≥ n+ 1 for every i ≥ 0. We prove f(i) ≤ g(i) for every

0 ≤ i ≤ k by induction on i. For i = 0 we have f(0) = 1 ≤ n = g(0). For i > 0 we

3.2. DECISION PROCEDURES FOR COVERABILITY 43

have

f(i) = (nf(i− 1))i + f(i− 1)

≤ (ng(i− 1))k + g(i− 1)

≤ (ng(i− 1))k + g(i− 1)k

= (nk + 1)g(i− 1)k

≤ (n+ 1)kg(i− 1)k

≤ g(i− 1)kg(i− 1)k

= g(i)

By Lemma 3.2.7, if (N,G0) has a (k,G)-covering sequence, then it has one of length

at most g(k) = (n+ 1)(2k)
k

. �

By Theorem 3.2.6, in order to decide coverability of M we can just construct the

reachability graph using breadth-first search up to depth (n + 1)(2k)
k

, where n is the

maximal number of tokens in any place of the marking M , and k is the number of

places in the net. Clearly, the same holds for the coverability graph, because, loosely

speaking, it just “improves” our chances of covering M .

It can be asked whether Rackoff’s bound is the best one can hope for. The affirma-

tive answer was essentially proved by Lipton, who showed that a Petri net with O(k2)
places (and at most one token per place in the initial marking) can simulate a counter

machine whose counters are bounded by 22
k

. One can use this result to show that the

shortest path leading to a marking covering M can have length up to 22
√

k

for a Petri

net with k places.

3.2.3 The backwards-reachability algorithm

Definition 3.2.8 (Upward-closed sets of markings)

A set M of markings of a net N is upward closed if M ∈ M and M ′ ≥ M imply

M ′ ∈M.

A marking M of an upward closed setM is minimal if there is no M ′ ∈ M such

that M ′ ≤M and M ′ 6= M .

Observe that an upward closed set is completely determined by its minimal ele-

ments: two upwards closed sets are equal iff their sets of minimal elements are equal.

Lemma 3.2.9 Every upward-closed set of markings has finitely many minimal ele-

ments.

Proof. Assume M is upward closed and has infinitely many minimal markings

M1,M2, By Dickson’s Lemma there are i 6= j such that Mi ≤ Mj . But then

Mj is not minimal. �

44 CHAPTER 3. DECISION PROCEDURES

An important consequence of the lemma is that every upwards closed set can be

finitely represented by its set of minimal elements.

Definition 3.2.10 LetM be a set of markings of a net N = (S, T, F), and let t ∈ T
be a transition. We define

pre(M, t) = {M ′ |M ′ t
−→M for some M ∈M}

pre(M) =
⋃

t∈T

pre(M, t)

and further

pre0(M) = M

prei+1(M) = pre
(

prei(M)
)

for every i ≥ 0

pre∗(M) =

∞
⋃

i=0

prei(M)

Lemma 3.2.11 IfM is upward closed, then pre(M) is also upward closed.

Proof. Let M ′ ∈ pre(M). We have to prove that M ′ + M ′′ ∈ pre(M) holds for

every marking M ′′.

Since M ′ ∈ pre(M) there is M ∈ M and a transition t such that M ′ t
−→M . By

the firing rule we have M ′ + M ′′ t
−→M + M ′′ for every marking M ′′. Since M is

upward closed, we have M +M ′′ ∈ M. Since M ′ +M ′′ t
−→M +M ′′, we finally get

M ′ +M ′′ ∈ pre(M). �

Theorem 3.2.12 LetM be an upward-closed set of markings of a net N . Then there

is i ≥ 0 such that

pre∗(M) =

i
⋃

j=0

prej(M)

Proof. By Lemma 3.2.11, prej(X) is upward closed for every i ≥ 0. Since a (finite

or infinite) union of upward-closed sets is upward closed, pre∗(M) is upward closed

as well.

By Lemma 3.2.9, the set m∗ of minimal markings of pre∗(M) is finite. Therefore,

there exists an index i such that m∗ ⊆
⋃i

j=0 pre
j(M). Since this union is upward

closed, we get pre∗(M) ⊆
⋃i

j=0 pre
j(M), and therefore, by definition of pre∗(M),

we have pre∗(M) =
⋃i

j=0 pre
j(M). �

This theorem leads to the algorithm on the left of of Figure 3.3. However, this

version is not yet directly implementable, because it manipulates infinite sets. For each

3.2. DECISION PROCEDURES FOR COVERABILITY 45

BACK1((S, T, F,M0),M)
1 M := {M ′ |M ′ ≥M};
2 Old M := ∅;
3 while true

4 do Old M :=M;
5 M :=M∪ pre(M);
6 if M0 ∈M
7 then return covered end

8 ifM = Old M
9 then return not covered end

BACK2((S, T, F,M0),M)
1 m := {M};
2 old m := ∅;
3 while true

4 do old m := m;
5 m := min(m ∪

⋃

t∈T pre(m, t));
6 if ∃M ′ ∈ m : M0 ≥M ′

7 then return covered end

8 if m = old m

9 then return not covered end

Figure 3.3: Backwards reachability algorithm.

operation (union and pre) or test (the testsM 6= Old M and M0 /∈ M of the while-

loop), we have to supply an implementation that uses only the finite representation of

the set, that is, its set of minimal elements. Given a setM, let min(M) denote the set

of minimal elements ofM. We then have (exercise):

• M ∈M iff there exists M ′ ∈ min(M) such that M ≥M ′.

• M1 =M2 iff min(M1) = min(M2).

• min(M1 ∪M2) = min(min(M1) ∪min(M2)).

• min(pre(M, t)) = pre(min(M), t)).

Using these observations, we obtain the implementable version shown on the right

of Figure 3.3.

The abstract backwards-reachability algorithm

The backwards reachability algorithm can be reformulated in more general terms,

which allows to apply it to other models of concurrency more general than Petri nets.

This is an important advantage of the backwards reachability algorithm over the cover-

ability graph technique.

Definition 3.2.13 Given a set A, and a partial order �⊆ A × A, we say that � is a

well-quasi-order (wqo) if every infinite sequence a1a2a3 · · · ∈ Aω contains an infinite

chain ai1 � ai2 � · · · (where i1 < i2 < i3 . . .).

Here are some examples of well-quasi-orders:

• The pointwise order≤ on Nk.

• The subword order on Σ∗ for any finite alphabet Σ.

We say w1 � w2 if w1 is a scattered subword of w2, that is, if w1 can be obtained

from w2 by deleting letters. Higman’s lemma states that every infinite sequence

of words contains an infinite chain with respect to the subword order.

46 CHAPTER 3. DECISION PROCEDURES

• The subtree order on the set of finite trees over a finite alphabet Σ.

We say that t1 � t2 if there is an injective mapping from the nodes of tree t1
into the nodes of t2 that preserves reachability: n′ is reachable from n in t1 iff

the image of n′ is reachable from the image of n in t2. Kruskal’s lemma states

that every infinite sequence of trees contains an infinite chain with respect to the

subtree order.

Definition 3.2.14 Let A be a set and let � A × A be a wqo. A set X ⊆ A is upward

closed if x ∈ X and x � y implies y ∈ X for every x, y ∈ A. In particular, given

x ∈ A, the set {y ∈ A | y � x} is upward-closed.

A relation→⊆ A × A is monotonic if for every x → y and every x′ � x there is

y′ � y such that x′ → y′.
Given X ⊆ A, we define

pre(X) = {y ∈ A | y → x and x ∈ X}

Further we define:

pre0(X) = X

prei+1(X) = pre
(

prei(X)
)

for every i ≥ 0

pre∗(X) =

∞
⋃

i=0

prei(X)

Theorem 3.2.15 Let A be a set and let � A×A be a wqo. Let X0 ⊆ A be an upward

closed set and let→⊆ A×A be monotonic. Then there is j ∈ N such that

pre∗(X) =

j
⋃

i=0

prei(X)

This theorem can be used to obtain a backwards reachability algorithm for gener-

alizations of Petri nets, like reset Petri nets, or lossy channel systems, whose transition

relation is monotonic. Other net models, like Petri nets with inhibitor arcs, do not

have a monotonic transition relations (adding tokens may disable a transition), and the

theorem cannot be applied to them. In fact we have:

Theorem 3.2.16 Deadlock freedom, Liveness, Boundedness, b-boundedness, Reach-

ability, and Coverability are all undecidable for Petri nets with inhibitor arcs.

3.3 Decision procedures for other problems

3.3.1 Reachability

The decidability of Reachability was open for about 10 years until it was proved by

Mayr in 1980. Kosaraju and Lambert simplied the proof in 1982 and 1992, respectively.

All these algorithms and their proofs exceed the framework of this course.

In 2012 Leroux provided a new, very simple algorithm. Its proof is as complicated

as the proofs of the previous ones, but the algorithm is very simple to describe.

3.3. DECISION PROCEDURES FOR OTHER PROBLEMS 47

Definition 3.3.1 (Semilinear set) A set X ⊆ Nk is linear if there is r ∈ Nk (the root)

and a finite set P ⊆ Nk (the periods) such that

X = {r +
∑

p∈P

λpp}

A semilinear set is a finite union of linear sets.

Observe that a semilinear set can be finitely represented as a set of pairs {(r1, P1), . . . , (rn, Pn)}
giving the roots and periods of its linear sets.

Theorem 3.3.2 [Leroux 12] Let (N,M0) be a Petri net and let M be a marking of M .

If M is not reachable from M0, then there exists a semilinear setM of markings of N
such that

(a) M0 ∈M,

(b) if M ∈M and M
t
−→M ′ for some transition t of N , then M ′ ∈ M, and

(c) M /∈M.

Given the root r and periods p1, . . . , pn of a semilinear set M, we can check

whetherM satisfies (a)-(c). Indeed, checking (a) amounts to solving the linear sys-

tem of diophantine equations

M0 = r +

n
∑

i=1

λipi

with unknowns λ1, . . . , λn. Similarly, checking (c) amounts to showing that

M = r +

n
∑

i=1

λipi

has no solution. Finally, checking (b) is more complicated, but reduces to checking

validity of a formula of a theory called Presburger arithmetic for which decision pro-

cedures exist.

Now, Theorem 3.3.2 can be used to give an algorithm for Reachability consisting

of two semi-decision procedures, one that explores the reachability graph breadth-first

and stops if it finds the goal markingM , and another one that enumerates all semilinear

sets, and stops if one of them satisfies (a)-(c). The two procedures run in parallel, and,

since one of the two is bound to terminate, yield together a decision procedure for

Reachability.

3.3.2 Deadlock-freedom

Now we reduce Deadlock-freedom to Reachability. We proceed in two stages. First,

we reduce Deadlock-freedom to an auxiliary problem P, and then we reduce P to

reachability.

48 CHAPTER 3. DECISION PROCEDURES

P: Given a Petri net (N,M0) and a subset R of places of N , is there a

reachable marking M such that M(s) = 0 for every s ∈ R?

Theorem 3.3.3 Deadlock-freedom can be reduced to P.

Proof. Let (N,M0) be a Petri net such that N = (S, T, F). Define

S = {R ⊆ S | ∀t ∈ T : •t ∩R 6= ∅}

that is, an element of S contains for every transition t at least on of the input places of

t. We have

(1) S is a finite set.

(2) A marking M of N is dead iff the set of places unmarked at M is an element of

S.

Suppose now that there is an algorithm that decides P. We can then decide Deadlock-

freedom as follows. For every R ∈ S we use the algorithm for P to decide if some

reachable marking M satisfies M(s) = 0 for every s ∈ R. It follows from (2) that

(N,M0) is deadlock-free if the answer is negative in all cases. Since, by (1), we only

have to solve a finite number of instances of P, Deadlock-freedom is decidable. �

Theorem 3.3.4 P can be reduced to Reachability.

Proof. Let (N,M0) be a Petri net where N = (S, T, F), and let R be a set of places

of N . We construct a new Petri net (N ′,M ′
0) by adding new places, transitions, and

arcs to (N,M0). We proceed in two steps (see Figure 3.4):

• Add two new places s0 and r0. Put one token on s0.

• Add a transition t0 and arcs (s0, t0) and (t0, r0).

• For every transition t ∈ T , add two arcs (s0, t) und (t, s0).

While s0 remains marked, all transitions of T can fire. However, transition t0
can occur at any time, and when this happens all transitions of T become “dead”.

Intuitively, the firing of t0 “freezes” (N,M0).

• For every place s ∈ S\R add a new transition ts and arcs (s, ts), (r0, ts), (ts, r0).

If r0 is marked, then the ts transitions can occur. These transitions “empty” the

places of S \R.

This concludes the definition of (N ′,M ′
0).

Let Mr0 be the marking of N ′ that puts one token on r0 and no tokens elsewhere.

We have

3.3. DECISION PROCEDURES FOR OTHER PROBLEMS 49

sn

.

..

..

..

.

t1 tm

ts1

T

..
. .

..
..

..

.

S \R

t0 r0s0

N

tsn

s1

Figure 3.4: Construction of Theorem 3.3.4

(1) If some reachable marking M of (N,M0) puts no tokens in R, then Mr0 is a

reachable marking of (N ′,M ′
0).

To reach Mr0 we first fire transitions of T to reach M , then we fire t0, and finally

we fire ts transitions until S is empty.

(2) If Mr0 is a reachable marking of (N ′,M ′
0), then some marking M reachable

from (N,M0) puts no tokens in R.

Mr0 can only be reached by firing t0 at a marking that puts no tokens in R
(because after firing t0 the places of R cannot be emptied anymore). So we can

choose M as the marking reached immediately before firing t0.

By (1) and (2), we can decide if some reachable marking M of (N,M0) puts no

tokens in R as follows: construct (N ′,M ′
0) and decide if Mr0 is reachable. Therefore,

if there is an algorithm for Reachability, then there is also one for P. �

50 CHAPTER 3. DECISION PROCEDURES

3.3.3 Liveness

Liveness can also be reduced to Reachability, but the proof is more complex. We

sketch the reduction for the problem whether a given transition t of a Petri net (N,M0)
is live.

Let Et be the set of markings of N that enable t. Clearly, Et is upward closed.

By Lemma 3.2.11, the set pre∗(Et) is also upward closed. Now, pre∗(Et) is the set

of markings of N that enable some firing sequence ending with t. Let Dt be the

complement of pre∗(Et), that is, the set of markings from which t cannot be enabled

anymore. We have: (N,M0) is live iff [M0〉 ∩Dt = ∅.
If Dt is a finite set of markings, and we are able to compute it, then we are done:

we have reduced the liveness problem to a finite number of instances of Reachability.

However, the set Dt may be infinite, and we do not yet know how to compute it. We

show how to deal with these problems.

Every upward-closed set of markings is semilinear (exercise). Using the backwards

reachability algorithm, we can compute the finite set min(pre∗(Et)), and from it we

can compute a representation of pre∗(Et) as a semilinear set. Now we use a powerful

result: the complement of a semilinear set is also semilinear; moreover, there is an

algorithm that, given a representation of a semilinear set X ⊆ Nk, computes a repre-

sentation of the complement Nk \X . So we are left with the problem: given a Petri net

(N,M0) and a semilinear set X , decide if some marking of X is reachable from M0.

This problem can be reduced to Reachability as follows (brief sketch). We con-

struct a Petri net that first simulates (N,M0), and then transfers control to another Petri

net which nondeterministically generates a marking of X on “copies” of the places of

N . This second net then transfers control to a third, whose transitions remove one to-

ken from a place of N and a token from its “copy”. If X is reachable, then the first

net can produce a marking of X , the second net can produce the same marking, and

the third net can then remove all tokens from the first and second nets, reaching the

empty marking. Conversely, if the net consisting of the three nets together can reach

the empty marking, then (N,M0) can reach some marking of X .

3.4 Complexity

Unfortunately, all the algorithms we have seen so far have very high complexity: all

of them are EXPSPACE-hard. That is, the memory needed by any algorithm solving

one of these problems necessarily grows exponentially in the size of the input Petri

net. Boundedness and Coverability have been proved to be EXPSPACE-complete,

that is, there exist algorithms for them that “only” require exponential memory. It is

conjectured that the same holds for Deadlock-freedom, Liveness, and Reachability,

but so far no proof has been found. The known algorithms for this problem have

extremely high complexity: there is no primitive-recursive bound for their memory

requirements. To undertsand what this means, define inductively the functions expk(x)
as follows:

• exp0(x) = x;

3.5. ALGORITHMS FOR BOUNDED PETRI NETS 51

• expk+1(x) = 2expk(x).

The worst-case time and space complexity of the known algorithms for these three

problems grows faster as expk for every k ≥ 0!!

3.5 Algorithms for bounded Petri nets

In many practical cases it is easy to show that a Petri net is bounded. In this case the

set of reachable markings is finite, and the reachability graph can be computed and

stored, at least in principle. If the reachability graph is available, then it is easy to give

algorithms b-Boundedness, Reachability, and Deadlock-freedom running in linear

time in the size of the reachability graph. We show now that this is also the case for

Liveness.

Let G = (V,E) be the reachability graph of a Petri net(N,M0). We define the

relation
∗
←→⊆ V × V as follows: M

∗
←→M ′ gdw. M

∗
−→M ′ und M ′ ∗

−→M.
∗
←→ is clearly an equivalence relation on V . Each equivalence class V ′ ⊆ V of

∗
←→ yields together with E′ = E ∩ (V ′ × V) a strongly connected component (SCC)

(V ′, E′) of G.

Strongly connected components are partially ordered by the relation < defined as

follows: (V ′, E′) < (V ′′, E′′) if V ′ 6= V ′′ and ∀M ′ ∈ V ′, M ′′ ∈ V ′′ : M ′′ ∈ [M ′〉.
The bottom SCCs of the reachability graph are the maximal SCCs with respect to <.

Proposition 3.5.1 Let (N,M0) be a bounded Petri net. (N,M0) is live iff for every

bottom SCC of the reachability graph of (N,M0) and for every transition t, some

marking of the SCC enables t.

Proof. Follows easily from the definitions. �

The condition of Proposition 3.5.1 can be checked in linear time using Tarjan’s al-

gorithm, whch computes all the SCCs of a directed graph in linear time. The algorithm

can be easily adapted to compute the bottom SCCs.

52 CHAPTER 3. DECISION PROCEDURES

Chapter 4

Semi-decision procedures

4.1 Linear systems of equations and linear program-

ming

In the next two sections we will construct linear systems of equations with integer or

rational coefficients that provide partial information about our analysis problems. We

will prove propositions like “if the system of equations A · X ≤ b (we will see how

this system looks like) has a rational positive solution, then the Petri net (N,M0) is

bounded” (sufficient condition), or “if M is reachable in (N,M0), then the system of

equations B · X = b has a solution over the natural numbers” (necessary condition).

Such propositions lead to semi-decision procedures to prove or disprove a property.

The complexity of these procedures depends on the complexity of solving the different

systems of equations.

We define the size of a linear system of equations A ·X = b or A · X ≤ b where

A = (aij)i=1,...n,j=1,...,m and b = (bj)j=1,...,m as

∑

{log2|aij | | 1 ≤ i ≤ n, 1 ≤ j ≤ m}+
∑

{log2|bj | | 1 ≤ j ≤ m}

The problem of deciding whether A ·X = b has

• a rational solution can be solved in polynomial time (though not by means of

Gauss elimination!).

• an integer solution can be solved in polynomial time.

• a nonnegative integer solution is NP-complete.

The problem of deciding whether A ·X ≤ b has

• a rational solution can be solved in polynomial time. 1

1In practice we often use the Simplex algorithm, which has exponential worst-case complexity, but is

very efficient for most instances.

53

54 CHAPTER 4. SEMI-DECISION PROCEDURES

• an integer solution is NP-complete.

• a nonnegative integer solution is NP-complete.

Given a linear objective function f(X) = c1x1 + . . . cm we can decide with the same

runtime whether there is a solution Xop that maximizes f(X) and, if so, the value

f(Xop).

4.2 The Marking Equation

Definition 4.2.1 (Incidence matrix)

Let N = (S, T, F) be a net. The incidence matrix N : (S × T)→ {−1, 0, 1} is given

by

N(s, t) =















0 if (s, t) 6∈ F and (t, s) 6∈ F or

(s, t) ∈ F and (t, s) ∈ F
−1 if (s, t) ∈ F and (t, s) 6∈ F
1 if (s, t) 6∈ F and (t, s) ∈ F

The column N(−, t) is denoted by t, and the row N(s,−) by s.

Example 4.2.2 s5

t2

s3

t1

t4t3

s4

s1 s2

t1 t2 t3 t4
s1 −1 0 1 0
s2 −1 0 0 1
s3 1 −1 0 0
s4 0 1 −1 0
s5 0 1 0 −1

Definition 4.2.3 (Parikh-vector of a sequence of transitions)

Let N = (S, T, F) be a net and let σ be a finite sequence of transitions. The Parikh-

vector ~σ : T → IN von σ is defined by

~σ(t) = number of occurrences of t in σ

Lemma 4.2.4 (Marking Equation Lemma)

Let N be a net and let M
σ
−→M ′ be a firing sequence of N . Then M ′ = M +N · ~σ.

4.2. THE MARKING EQUATION 55

Proof. By induction on the length of σ.

Basis: σ = ǫ. Then M = M ′ and ~σ = 0
Step: σ = τt for some sequence τ and transition t. Let M

τ
−→ L

t
−→M ′. We have

M ′ = L+ t (Definition of t)

= L+N · ~t (Definition of ~t)

= M +N · ~τ +N · ~t (Induction hyp.)

= M +N · (~τ + ~t)

= M +N · ~τt (Definition of Parikh-vector)

= M +N · ~σ (σ = τt)

�

Example 4.2.5 In the previous net we have (11000)
t1t2t3
−−→ (10001), and

1
0
0
0
1













1
1
0
0
0













+













−1 0 1 0
−1 0 0 1
1 −1 0 0
0 1 −1 0
0 1 0 −1













·









1
1
1
0









The marking reached by firing a sequence σ from a marking M depends only on

the Parikh-vector ~σ. In other words, if M enables two sequences σ and τ with ~σ = ~τ ,

then both σ and τ lead to the same marking.

Definition 4.2.6 (The Marking Equation)

The Marking Equation of a Petri net (N,M0) is M = M0 +N ·X with variables M
and X .

The Marking equation leads to the following semi-algorithms for Boundedness,

b-Boundedness, (Non)-Reachability, and Deadlock-freedom:

Proposition 4.2.7 (A sufficient condition for boundedness)

Let (N,M0) be a Petri net. If the optimization problem

maximize
∑

s∈S

M(s)

subject to M = M0 +N ·X

has an optimal solution, then (N,M0) is bounded.

Proof. Let n be the optimal solution of the problem. Then n ≥
∑

s∈S

M(s) holds for

every marking M for which there exists a vector X such that M = M0 + N · X .

By Lemma 4.2.4 we have n ≥
∑

s∈S

M(s) for every reachable marking M , and so

n ≥M(s) for every reachable marking M and every place s. �

Exercise: Change the algorithm so that it checks whether a given place is bounded.

56 CHAPTER 4. SEMI-DECISION PROCEDURES

Proposition 4.2.8 (A sufficient condition for non-reachability)

Let (N,M0) be a Petri net and let L be a marking of N . If the equation

L = M0 +N ·X (with only X as variable)

has no solution, then L is not reachable from M0.

Proof. Immediate consequence of Lemma 4.2.4. �

Proposition 4.2.9 (A sufficient condition for deadlock-freedom)

Let (N,M0) be a 1-bounded Petri net where N = (S, T, F). If the following system of

inequations has no solution then (N,M0) is deadlock-free.

M = M0 +N ·X
∑

s∈·t
M(s) < |•t| for every transition t.

Proof. We show: if there is a reachable dead marking M , then M is a solution

of the system. By Lemma 4.2.4 and the reachability of M there is a vector X sat-

isfying M = M0 + N · X . Since (N,M0) is 1-bounded, we have M(s) ≤ 1 for

every place s. Let t be an arbitrary transititon. Since M does not enable t, we have

M(s) = 0 for at least one place s ∈ •t. Since M does not enable any transition, we

get
∑

s∈·t
M(s) < |•t|. �

Remark 4.2.10 The converses of these propositions do not hold (that is why they are

semi-algorithms!). Counterexamples are:

• To Proposition 4.2.7:

s2

t1

s1 t1
s1 0
s2 1

(N,M0) ist bounded but

(

0

n

)

=

(

0

0

)

+

(

0

1

)

· n

for every n (that is, the Marking Equation has a solution for every marking of

the form (0, n)).

• To Proposition 4.2.8:

Peterson’s algorithm: the marking (p4, q4,m1 = true,m2 = true, hold = 1)
ist not reachable, but the Marking Equation has a solution (Exercise: find a

smaller example).

4.3. S- AND T-INVARIANTS 57

s2s1

t1 t2 t3

s4s3

Figure 4.1

• To Proposition 4.2.9:

Peterson’s algorithm with an additional transition t satisfying •t = {p4, q4}
and t• = ∅. The Petri net is deadlock free, but the Marking Equation has a

solution for (m1 = true,m2 = true, hold = 1) that satisfies the conditions of

Proposition 4.2.9 (Exercise: find a smaller example).

4.3 S- and T-invariants

4.3.1 S-invariants

Definition 4.3.1 (S-invariants)

Let N = (S, T, F) be a net. An S-invariant of N is a vector I : S → Q such that

I ·N = 0.

Proposition 4.3.2 (Fundamental property of S-invariants)

Let (N,M0) be a Petri net and let I be a S-invariant of N . If M0
∗
−→ M , then

I ·M = I ·M0.

Proof. We have M0
σ
−→ M for some firing sequence σ. By the Marking Equation

Lemma we get

M = M0 +N · ~σ

and so
I ·M = I ·M0 + I ·N · ~σ (Marking Equation)

= I ·M0 (I ·N = 0)

�

The value of the expression I ·M is therefore the same for every reachable marking

M , and so it constitutes an invariant of (N,M0).

Example 4.3.3 We compute the S-invariants of the net of Figure 4.1

58 CHAPTER 4. SEMI-DECISION PROCEDURES

The incidence matrix is:

t1 t2 t3
s1 1 −1 0
s2 0 −1 1
s3 −1 1 0
s4 0 1 −1

We compute the solutions of the system of equations

(i1, i2, i3, i4) ·









1 −1 0
0 −1 1
−1 1 0
0 1 −1









= 0

The general form of the S-invariants is therefore (x, y, x, y) with x, y ∈ Q

The following propositions are an immediate consequence of the definition of S-

invariants:

Proposition 4.3.4 The S-invariants of a net form a vector space over the real numbers.

This definition of S-invariant is very suitable for machines, but not for humans,

who can only solve very small systems of equations by hand. There is an equivalent

definition which allows people to decide, even for nets with several dozens of places,

if a given vector is an S-invariant.

Proposition 4.3.5 I is an S-invariant of N = (S, T, F) iff. ∀t ∈ T :
∑

s∈•t

I(s) =
∑

s∈t•
I(s).

Proof. I ·N = 0 is equivalent to I ·t = 0 for every transition t. So for every transition

t we have: I · t =
∑

s∈t•
I(s)−

∑

s∈•t

I(s). �

Example 4.3.6 We show that I = (1, 1, 2, 1) is an S-invariant of the net of Figure 4.2.

The condition of Proposition 4.3.5 must hold for transitions t1, t2 und t3.

• Transition t1: I(s1) + I(s2) = I(s3) = 2.

• Transition t2: I(s3) = I(s1) + I(s4) = 2.

• Transition t3: I(s3) = I(s4) + I(s2) = 2.

With the help of S-invariants we can give sufficient conditions for boundedness and

necessary conditions for liveness and for the reachability of a marking.

4.3. S- AND T-INVARIANTS 59

s3

s1

t3

s4

t2

t1

s2

Figure 4.2

Definition 4.3.7 (Semi-positive and positive S-invariants)

Let I be an S-invariant of N = (S, T, F). I is semi-positive if I ≥ 0 and I 6= 0, and

positive if I > 0 (that is, if I(s) > 0 for every s ∈ S). The support of an S-invariant is

the set 〈I〉 = {s ∈ S | I(s) > 0}.

Proposition 4.3.8 [A sufficient condition for boundedness]

Let (N,M0) be a Petri net. If N has a positive S-invariant I , then (N,M0) is bounded.

More precisely: (N,M0) is n-bounded for

n = max

{

I ·M0

I(s)
| s is a place of N

}

Proof. Let M be any reachable marking. By the fundamental property of S-invariants

we have I ·M = I ·M0.

Let s be an arbitrary place of N . Since I > 0 we have I(s) ·M(s) ≤ I ·M = I ·M0

and M(s) ≤ I·M0

I(s) . �

Proposition 4.3.9 [A necessary condition for liveness]

If (N,M0) is live, then I ·M0 > 0 for every semi-positive S-invariant of N .

Proof. Let I be a semi-positive S-invariant and let s be a place of 〈I〉. Since (N,M0)
is live, some reachable marking M satisfies M(s) > 0. Since I is semi-positive, we

have I ·M ≥ I(s) ·M(s) > 0. Since I is a S-invariant, we get I ·M0 = I ·M > 0 �

These two propositions lead immediately to semi-algorithms for Boundedness and

Liveness.

60 CHAPTER 4. SEMI-DECISION PROCEDURES

Definition 4.3.10 (The ∼ relation)

Let M and L be markings and let I be a S-invariant of a net N . M und L agree on I
if I ·M = I · L. We write M ∼ L if M and L agree on all invariants of N .

Proposition 4.3.11 [A necessary condition for reachability]

Let (N,M0) be a Petri net. M ∼M0 holds for every M ∈ [M0〉.

Proof. Follows from the fundamental property of S-invariants. �

The following theorem allows one to decide if M ∼ L holds for two given markings

M and L.

Theorem 4.3.12 Let N be a net and let M,L be two markings of N .

M ∼ L iff the equation M = L+N ·X has a rational solution.

Proof. (⇒): Since M ∼ L, we have I · (L −M) = 0 for every S-invariant I .

We now recall a well-known theorem of linear algebra. Given a n ×m matrix A,

let U = {u ∈ Nn | u · A = 0}, and let V = {v ∈ Nm | u · v = 0 for every u ∈ U}.
Then both U and V are vector spaces, and the columns of A contain a basis of V .

If we take A := N, then U is the set of S-invariants of N , and so, by the theorem,

the columns of N contain a basis of the vector space of vectors v satisfying I ·v = 0 for

every S-invariant I . In particular, since (L−M) is one of these vectors, (L−M) is a

linear combination over Q of the columns of N, and so the equation N ·X = (L−M)
has a rational solution.

(⇐) : Let I be an S-invariant of N . Since I ·N = 0 we have I ·L = I ·M+I ·N ·X =
I ·M . �

We also have the following consequences:

M is reachable from L
6⇑ ⇓

M = L+N ·X has a solution X ∈ N|T |

6⇑ ⇓
M = L+N ·X has a solution X ∈ Q|T |

m
M ∼ L

4.3.2 T-invariants

Definition 4.3.13 (T-invariants)

Let N = (S, T, F) be a net. A vector J : T → Q is a T-invariant of N if N · J = 0.

Proposition 4.3.14 J is a T-invariant of N = (S, T, F) iff ∀s ∈ S :
∑

t∈•s

J(t) =
∑

t∈s•
J(t).

4.4. SIPHONS AND TRAPS 61

Proposition 4.3.15 [Fundamental property of T-invariants]

Let N be a net, let M be a marking of N , and let σ be a sequence of transitions of N
enabled at M . The vector ~σ is a T-invariant of N iff M

σ
−→M .

Proof. (⇒) : Let M ′ be the marking satisfying M
σ
−→M ′. By the Marking Equation

we have M ′ = M +N · ~σ. Since N · ~σ = 0 we get M ′ = M

(⇐) : By the Marking Equation we have M = M +N · ~σ and so N · ~σ = 0. �

Example 4.3.16 We compute the T-invariants of the net of Figure 4.1 as the solutions

of the system of equations









1 −1 0
0 −1 1
−1 1 0
0 1 −1













j1
j2
j3



 = 0

The general form of the T-invarints is (x, x, x), where x ∈ Q.

Using T-invariants we obtain a necessary condition for well-formedness of a net:

Theorem 4.3.17 [Necessary condition for well-formedness]

Every well-formed net has a positive T-invariant.

Proof. Let N be a well-formed net and let M0 be a live and bounded marking of N .

By liveness there is an infinite firing sequence σ1σ2σ3 · · · such that every σi is a finite

firing sequence containing all transitions of N . We have

M0
σ1−→M1

σ2−→M2
σ3−→ . . .

By boundedness there are indices i < j such that Mi = Mj . So the sequence

σi+1 . . . σj satisfies

Mi

σi+1...σj

−−→ Mi

and so J = ~σi+1 + . . .+ ~σj is a T-invariant of N . Further, J is positive because every

transition occurs at least once in σi+1 . . . σj . �

4.4 Siphons and Traps

4.4.1 Siphons

Definition 4.4.1 (Siphon)

Let N = (S, T, F) be a net. A set R ⊆ S of places is a siphon of N if •R ⊆ R•. A

siphon R is proper if R 6= ∅.

62 CHAPTER 4. SEMI-DECISION PROCEDURES

t3

s3

t5t1

t2

s1

t4

s4s2

Figure 4.3

{s1, s2} is a siphon of the net of Figure 4.3 because

•{s1, s2} =
•s1 ∪

•s2 = {t2} ∪ {t1} = {t1, t2}

und

{s1, s2}
• = s•1 ∪ s•2 = {t1} ∪ {t2, t3} = {t1, t2, t3}

Proposition 4.4.2 [Fundamental property of siphons]

Let R be a siphon of a net N , and let M
σ
−→ M ′ be a firing sequence of N . If

M(R) = 0, then M ′(R) = 0.

Proof. Since •R ⊆ R•, the transitions that can mark R can only occur at markings

that already mark R. �

Loosely speaking, a siphon that becomes unmarked (or “empty”), remains un-

marked forever.

Corollary 4.4.3 [A necessary condition for reachability]

If M is reachable in (N,M0), then for every siphon R, if M0(R) = 0 then M(R) = 0.

We can easily check in polynomial time if this condition holds. For this we first

observe that, if R1 and R2 are siphons of N , then so is R1 ∪ R2 (exercise). It follows

that there exists a unique largest siphon Q0 unmarked at M0 (more precisely, R ⊆ Q0

for every siphon R such that M0(R) = 0). We claim that the condition holds if and

only if M(Q0) = 0.

• If the condition holds, then, since M0(Q0) = 0 by definition, we get M(Q0) =
0.

• If the condition does not hold, then there is a siphon R such that M0(R) = 0 and

M(R) > 0. Since R ⊆ Q0, we also have M(Q0) > 0.

The siphon Q0 can be determined with the help of the following algorithm, which

computes the largest siphon Q contained in a given set R of places—it suffices then to

choose R as the set of places unmarked at M0.

4.4. SIPHONS AND TRAPS 63

Input: A net N = (S, T, F) and R ⊆ S.

Output: The largest siphon Q ⊆ R.

Initialization: Q := R.

begin

while there are s ∈ Q and t ∈ •s such that t /∈ Q• do

Q : = Q \ {s}
endwhile

end

Exercise: Show that the algorithm is correct. That is, prove that the algorithm

terminates, and that after termination Q is the largest siphon contained in R.

Proposition 4.4.4 [A necessary condition for liveness]

If (N,M0) is live, then M0 marks every proper siphon of N .

Proof. Let R be a proper siphon of N and let s ∈ R. Since we assume that N is

connected, •s ∪ s• 6= ∅, and, since R is a siphon, s• 6= ∅. Let t ∈ s• 6= ∅. By liveness

some reachable marking enables t, and so some reachable marking marks s, and there-

fore also the siphon R. By Proposition 4.4.3 the initial marking M0 also marks R. �

Again, the condition can be checked with the help of the algorithm above: the con-

dition holds if and only if Q0 = ∅. We now look at deadlock-freedom. We can obtain

a sufficient condition for it, but not one that is easy to check.

Proposition 4.4.5 If M is a dead marking of N , then the set of places unmarked at M
is a siphon of N .

Proof. Let R = {s | M(s) = 0}. For every transition t there is a place s ∈ •t such

that M(s) = 0 (otherwise t would be enabled). So R• contains all transitions of N ,

and therefore •R ⊆ R•. �

Corollary 4.4.6 [A sufficient condition for deadlock-freedom] Let (N,M0) be a Petri

net. If every reachable marking marks all siphons of N , then (N,M0) is deadlock-free.

4.4.2 Traps

Definition 4.4.7 (Trap)

Let N = (S, T, F) be a trap. A set R ⊆ S of places is a trap if R• ⊆ •R. A trap R is

proper if R 6= ∅.

{s3, s4} is a trap of the net of Figure 4.3.

Proposition 4.4.8 [Fundamental property of traps]

Let R be a trap of a net N and let M
σ
−→M ′ be a firing sequence of N . If M(R) > 0,

then M ′(R) > 0.

64 CHAPTER 4. SEMI-DECISION PROCEDURES

Proof. Since •R ⊆ •R, transitions that take tokens from R put tokens in R. �

So, loosely speaking, marked traps stay marked. Notice, however, that this does

not mean that the number of tokens of a trap cannot decrease. The number can go up

or down, just not become 0.

Corollary 4.4.9 [A necessary condition for reachability]

If M is reachable in (N,M0), then for every trap R, if M0(R) > 0 then M(R) > 0.

As in the case of siphons, we can check in polynomial time if this condition holds.

If R1 and R2 are traps of N , then so is R1 ∪ R2 (exercise). So there exists a unique

largest trap Q0 marked at M0 (more precisely, R ⊆ Q0 for every trap R such that

M(R) > 0). It is easy to see that the condition holds if and only if M0(Q0) > 0
(exercise).

To compute the largest trap unmarked at M , we can transform the algorithm that

computes the largest siphon contained in a given set of places into an algorithm for

computing the largest trap (exercise).

Recall that checking the sufficient condition for deadlock-freedom was computa-

tionally expensive, because of the form “for every reachable marking ...”. Combining

siphons and traps we obtain an easier-to-check condition.

Proposition 4.4.10 [A sufficient condition for deadlock-freedom]

Let (N,M0) be a Petri net. If every proper siphon of N contains a trap marked at M0,

then (N,M0) is deadlock-free.

Proof. Easy consequence of Corollary 4.4.6 and Proposition 4.4.8. �

The siphon-trap condition cannot be checked in polynomial time unless P=NP

(whether every proper siphon contains a marked trap is an NP-complete problem), but

can be checked with the help of a SAT-solver (see “New algorithms for deciding the

siphon-trap property” by O. Oanea, H. Wimmel, and K. Wolf).

We finally show how to combine S-invariants and traps to prove that Peterson’s

algorithm satisfies the mutual exclusion property. For the Petri net model of Figure 2.8

mutual exclusion means that no reachable marking M satisfies M(p4) ≥ 1∧M(q4) ≥
1. We first compute three S-invariants:

(1) M(hold = 1) +M(hold = 2) = 1

(2) M(p2) +M(p3) +M(p4) +M(m1 = f) = 1

(3) M(q2) +M(q3) +M(q4) +M(m1 = f) = 1

and two constraints derived from traps:

(4) M(m1 = f) +M(p2) +M(hold = 1) +M(q3) > 0

(5) M(m2 = f) +M(q2) +M(hold = 2) +M(p3) > 0

4.4. SIPHONS AND TRAPS 65

Assume now M(p4) ≥ 1 ∧M(q4) ≥ 1 holds. We have:

M(p4) ≥ 1 ∧M(q4) ≥ 1

⇒ {(2), (3)}

M(p2) +M(p3) +M(m1 = f) = 0 ∧ M(q2) +M(q3) +M(m2 = f) = 0

⇒ {(1)}

M(m1 = f) +M(p2)+ M(m2 = f) +M(q2)+
M(hold = 1) +M(q3) = 0 ∨ M(hold = 2) +M(p3) = 0

Contradicts (4) Contradicts (5)

66 CHAPTER 4. SEMI-DECISION PROCEDURES

Chapter 5

Petri net classes with efficient

decision procedures

In the three sections of this chapter we study three classes of Petri nets: S-systems,

T-systems, and free-choice systems. The sections have a similar structure. After the

definition of the class, we introduce three theorems: the Liveness, Boundedness, and

Reachability Theorem. The Liveness Theorem characterizes the live Petri nets in the

class. The Boundedness Theorem characterizes the live and bounded systems. The

Reachability Theorem characterizes the reachable markings of the live and bounded

systems. The proof of the theorems requires some results about the structure of S- and

T-invariants of the class, which we also present.

The theorems immediately yield decision procedures for Liveness, Boundedness

and Reachability whose complexity is much lower than those for general Petri nets.

At the end of the section we present a final theorem, the Shortest Path Theorem,

which gives an upper bound for the length of the shortest firing sequence leading to a

given reachable marking.

The reader may ask why boundedness only for live Petri nets, and why reachability

only for live and bounded Petri nets. A first reason is that, in many application areas,

a Petri net model of a correct system must typically be live and bounded, and so,

when one of these properties fails, it does not make much sense to further analyze

the model. The second reason is that, interestingly, the general characterization of the

bounded systems or the reachable markings is more complicated and less elegant than

the corresponding characterization for live or live and bounded Petri nets.

The proofs of the theorems are very easy for S-systems, a bit more involved for T-

systems, and relatively complex for free-choice systems. For this reason we just sketch

the proofs for S-systems, explain the proofs in some detail for T-systems, and omit

them for free-choice systems.

67

68CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

5.1 S-Systems

Definition 5.1.1 (S-nets, S-systems) A net N = (S, T, F) is a S-net if |•t| = 1 = |t•|
for every transition t ∈ T . A Petri net (N,M0) is a S-system if N if N is a S-net.

Proposition 5.1.2 (Fundamental property of S-systems)

Let (N,M0) be a S-system with N = (S, T, F). Then M0(S) = M(S) for every

reachable marking M .

Proof. Every transition consumes one token and produces one token. �

Theorem 5.1.3 [Liveness Theorem] A S-system (N,M0) where N = (S, T, F) is live

iff N is strongly connected and M0(S) > 0.

Proof. (Sketch.)

(⇒): If N is not strongly connected, then there is an arc (s, t) such that N has no path

from t to s. For every marked place s′ such that there is a path from s′ to s, we fire the

transitions of the path to bring the tokens in s′ to s, and then fire t to empty s. We have

then reached a marking from which no tokens can “travel” back to s, and so a marking

from which t cannot occur again. So (N,M0) is not live.

If M0 marks no places, then no transition can occur, and (N,M0) is not live.

(⇐): If N is strongly connected and M0 puts at least one token somewhere, then

the token can freely move, reach any other place, and so enable any transition again. �

Theorem 5.1.4 [Boundedness Theorem] A live S-system (N,M0) where N = (S, T, F)
is b-bounded iff M0(S) ≤ b.

Proof. Trivial. �

Exercise: give a counterexample for non-live S-systems.

Theorem 5.1.5 [Reachability Theorem] Let (N,M0) be a live S-system and let M be

a marking of N . M is reachable from M0 iff M0(S) = M(S).

Proof. N is strongly connected by Proposition 5.1.3. So we are free to distribute the to-

kens of M0 in an arbitrary way, and reach any marking M , as long as M(S) = M0(S).
�

Proposition 5.1.6 [S-invariants of S-nets] Let N = (S, T, F) be a connected S-net. A

vector I : S → Q is a S-invariant of N iff I = (x, . . . , x) for some x ∈ Q.

5.2. T-SYSTEMS 69

Proof.

Each transition t ∈ T has exactly one input place st and an output place s′t. So we

have
∑

s∈•t

I(s) = I(st) and
∑

s∈t•

I(s) = I(s′t)

and therefore

I is a S-invariant

⇔ {Proposition 4.3.5 (alternative definition of S-invariant)}
∀t ∈ T : I(st) = I(s′t)

⇔ {N is connected}
∀s1, s2 ∈ S : I(s1) = I(s2)

⇔ { }
∃x ∈ Q∀s ∈ S : I(s) = x.

�

5.2 T-systems

Definition 5.2.1 (T-nets, T-systems) A net N = (S;T, F) is a T-net if |•s| = 1 = |s•|
for every place s ∈ S. A system (N,M0) is a T-system if N is a T-net.

Notation: Let γ be a circuit of a net N and let M be a marking of N . We denote by

M(γ) the number if tokens of γ under M , that is, M(γ) =
∑

s∈γ M(s).

Proposition 5.2.2 (Fundamental property of T-systems) Let γ be a circuit of a T-

systems (N,M0) and let M be a reachable marking. Then M(γ) = M0(γ).

Proof. Firing a transition does not change the number of tokens of γ. If the transition

does not belong to the circuit, then the distribution of tokens in the circuit does not

change. If the transition belongs to the circuit, then it removes one token from a place

of the circuit, and adds a token to another place. The token count does not change. �

5.2.1 Liveness

Theorem 5.2.3 [Liveness Theorem] A T-system (N,M0) is live iff M0(γ) > 0 for

every circuit γ of N .

Proof.

(⇒) Let γ be a circuit with M0(γ) = 0. By Proposition 5.2.2 we have M(γ) = 0
for every reachable marking M . So no transition of γ can ever occur.

(⇐) Let t be an arbitrary transition and let M be a reachable marking. We show

that some marking reachable from M enables t. Let SM be the set of places s of N

70CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

satisfying the following property: there is a path from s to t that contains no place

marked at M . We proceed by induction on |SM |. Basis: |SM | = 0. Then M(s) > 0
for every place s ∈ • t, and so M enables t.
Step: |SM | > 0. By the fundamental property of T-systems, every circuit of N is

marked at M . So there is a path Π such that:

(1) Π leads to t;

(2) M marks no place of Π;

(3) Π has maximal length (that is, no path longer than Π satisfies (1) and (2)).

Let u be the first element of Π. By (3) u is a transition and M marks all places of
•u. So M enables u. Moreover, we have u 6= t because M does not enable t. Let

M
u
−→M ′. We show that SM ′ ⊂ SM , and so that |SM ′ | < |SM |.

1. SM ′ ⊆ SM

Let s ∈ SM ′ . We show s ∈ SM . There is a path Π′ = s . . . t containing no place

marked at M ′. Assume Π′ contains a place r marked at M . Since M ′(r) = 0

and M
u
−→ M ′ we have u ∈ r• and so {u} = r•. So u is the successor of r in

Π′. Since u 6= t, M ′ marks the successor of u in Π′, contradicting the definition

of Π′.

2. SM ′ 6= SM . Let s be the successor of u in Π. Then s ∈ SM but s 6∈ SM ′ ,

because M ′(s) > 0.

By induction hypothesis there is a firing sequence M ′ σ
−→ M ′′ such that M ′′ enables

t. It follows M
u
−→ M ′ σ

−→ M ′′, and so M ′′ is a marking reachable from M that

enables t. �

5.2.2 Boundedness

Theorem 5.2.4 [Boundedness Theorem] A place s of a live T-system (N,M0) is b-
bounded iff it belongs to some circuit γ such that M0(γ) ≤ b.

Proof. (⇐) Follows from the fundamental property of T-systems (Proposition 5.2.2).

(⇒) Let M be a reachable marking such that M(s) is maximal. We have M(s) ≤ b.
Define the marking L as follows:

L(r) =

{

M(r) if r 6= s
0 if r = s

We claim that (N,L) is not live. Otherwise there would be a firing sequence L
σ
−→ L′

such that L′(s) > 0, and by the Monotonicity Lemma we would have M
σ
−→ M ′ for

some marking M ′ satisfying M ′(s) = L′(s)+M(s) > M(s), contradicting the maxi-

mality of M(s). By the Liveness Theorem some circuit γ is unmarked at L but marked

5.2. T-SYSTEMS 71

at M . Since L and M only differ in the place s, the circuit γ contains s. Further, s
is the only place of γ marked at M . So M(γ) = M(s), and since M(s) ≤ b we get

M(γ) ≤ b. �

Corollary 5.2.5 Let (N,M0) be a live T-system

1. A place of N is bounded iff it belongs to some circuit.

2. Let s be a bounded place. Then

max{M(s) |M0
∗
−→M} = min{M0(γ) | γ contains s}

3. (N,M0) is bounded iff N is strongly connected.

Proof. Exercise �

5.2.3 Reachability

We need to have a closer look at the T-invariants of T-systems.

Proposition 5.2.6 [T-invariants of T-nets] Let N = (S, T, F) be a connected T-net. A

vector J : T → Q is a T-invariant iff J = (x . . . x) for some x ∈ Q.

Proof. Dual of the proof of Proposition 5.1.6. �

Theorem 5.2.7 [Reachability Theorem] Let (N,M0) be a live T-system. A marking

M is reachable from M0 iff M0 ∼M .

Proof. (⇒) Proposition 4.3.11

(⇐) By Theorem 4.3.12 there is a rational vector X such that

M = M0 +N.X (5.1)

The vector J = (1, 1, . . . , 1) is a T-invariant of N (Proposition 5.2.6). So we have

N · (X + λJ) = N ·X

for every λ ∈ Q. So without loss of generality we can assume X ≥ 0.

Let T be the set of transitions of N . We show:

(1) There is a vector Y : T → IN such that M = M0 +N · Y . Let Y be the vector

with Y (t) = ⌈X(t)⌉ for every transition t (⌈x⌉ denotes the smallest integer

larger than or equal to x). By (5.1) we have

M(s) = M0(s) +X(t1)−X(t2)

72CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

for every place s, where {t1} = •s and {t2} = s•. Both M(s) and M0(s) are

integers. By the definition of Y we get

X(t1)−X(t2) = Y (t1)− Y (t2)

So M(s) = M0 + Y (t1)− Y (t2), which implies M = M0 +N · Y .

(2) M0
∗
−→M

By induction over |Y | =
∑

t∈T Y (t).
Basis: |Y | = 0. Then Y = 0 and M = M0.

Step: |Y | > 0.

We show that M0 enables some transition of 〈Y 〉. Let

Sy = {s ∈ •〈Y 〉 |M0(s) = 0}

Let s ∈ Sy . By M0(s) = 0 and M0 +N · Y = M ≥ 0 we have:

if some transition of s• belongs to 〈Y 〉, then some transition of •s
belongs to 〈Y 〉. (*)

Let Π be a path of maximal length containing places of Sy and transitions of

〈Y 〉 (such a path exists, because otherwise N would contain a circuit unmarked

at M0). By (*), the first node of Π is a transition t ∈ 〈Y 〉, and no place of •t
belongs to Sy. So M0 marks every place of •t, that is, M0 enables t.

Let M0
t
−→M1. We have

M1 +N(Y − ~t) = M

where

|Y − ~t| = |Y | − 1 < |Y |

By induction hypothesis we have M1
∗
−→ M . Since M0

t
−→ M1

∗
−→ M , we

get M0
∗
−→M .

�

5.2.4 Other properties

The theorems we have introduced have many interesting consequences. Her are two of

them.

Theorem 5.2.8 Let N be a strongly connected T-net. For every marking M0 the fol-

lowing statements are equivalent:

(1) (N,M0) is live.

5.2. T-SYSTEMS 73

(2) (N,M0) is deadlock-free.

(3) (N,M0) has an infinite firing sequence.

Proof. (1)⇒ (2)⇒ (3) follow immediately from the definitions. We show (3)⇒ (1).

Let M0
σ
−→ be an infinite firing sequence. We claim that every transition of N

occurs in σ. Since N is strongly connected, (N,M0) is bounded (Theorem 5.2.4). Let

σ = t1 t2 t3 . . ., and M0
t1−→ M1

t2−→ M2
t3−→ Since (N,M0) is bounded,

there are indices i and j with i < j such that Mi = Mj . Let σij be the subsequence

of σ containing the transitions between Mi and Mj . By the fundamental property of

T-invariants (Proposition 4.3.15) ~σij is a T-Invariant . By Proposition 5.2.6 there is

n ∈ N such that ~σij = (n . . . n). So every transition of N occurs in σij , and so the

same holds for σ.

Since every transition of N occurs in σ, for every place and every circuit of N
some marking reached during the execution of N marks the place or the circuit. By

the fundamental property of T-systems, all circuits of N are marked at M0. By the

Liveness Theorem (Theorem 5.2.3), (N,M0) is live. �

Theorem 5.2.9 [Genrich’s Theorem] Let N be a strongly connected T-net with at least

one place and one transition. There is a marking M0 such that (N,M0) is live and 1-

bounded.

Proof. Since N is strongly connected, any marking that puts tokens on all places of

N is live, because it marks all circuits (Liveness Theorem), and bounded, because all

markings of N are (Corollary 5.2.5).

Let (N,M) be live and bounded, but not 1-bounded. We construct another live

marking L of N satisfying the following two conditions:

(1) L(γ) ≤M(γ) for every circuit γ of N , and

(2) L(γ) < M(γ) for at least one circuit γ.

By Theorem 5.2.4, at least one place of N has a smaller bound under L as under M .

Iterating this construction we obtain a 1-bounded marking of N .

Let s be a non-1-bounded place of (N,M). Some reachable marking M ′ satisfies

M ′(s) ≥ 2. Let L be the marking that puts exactly one token in s, and as many tokens

as M elsewhere.

Since M is live, it marks all circuits of N . By constructionL also marks all circuits,

and so L is also live. Condition (1) is a consequence of the definition of L. Condition

(2) holds for all circuits containing s (and there is at least one, because N is strongly

connected). �

74CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

free-choice not free-choice

Figure 5.1

5.3 Free-Choice Systems

Definition 5.3.1 (Free-Choice nets, Free-Choice systems) A net N = (S, T, F) is

free-choice if s• × •t ⊆ F for every s ∈ S and t ∈ T such that (s, t) ∈ F . A Petri net

(N,M0) is free-choice if N is a free-choice net..

This definition is very concise and moreover symmetric with respect to places and

transitions. If the reader finds it cryptic, the following equivalent definitions may help.

Proposition 5.3.2 [Alternative definitions of free-choice nets]

(1) A net is free-choice if for every two transitions t1, t2:

(t1 6= t2 ∧
•t1 ∩

•t2 6= ∅)⇒
•t1 = •t2

(2) A net is free-choice if for every two places s1, s2:

(s1 6= s2 ∧ s•1 ∩ s•2 6= ∅)⇒ s•1 = s•2

Proof. Exercise. �

Figure 5.1 illustrates these definitions.

Clearly, S- and T-systems are special cases of free-choice systems (see Figure 5.2).

5.3.1 Liveness

We showed in the last chapter that a Petri net in which every siphon contains an initially

marked trap is deadlock-free, but the converse does not hold. For free-choice systems

we obtain Commoner’s Theorem, a much stronger result characterizing liveness.

Theorem 5.3.3 [Commoner’s Liveness Theorem] A free-choice system (N,M0) is live

iff every siphon of N contains a trap marked at M0.

Proof. We sketch the following direction: if every siphon of N contains a trap

marked at M0, then (N,M0) is live. We need the following definitions. Let M be a

5.3. FREE-CHOICE SYSTEMS 75

Circuits T-systemsS-systems

Free-choice systems

Figure 5.2: Net classes

marking of N . A transition t is dead at M if it is not enabled at any marking of [M〉.
Let DM denote the set of transitions dead at M . A transition t is live at M if t 6∈ DM ′

for every marking M ′ ∈ [M〉. Let LM be the set of transitions live at M . Notice that

a transition may be neither live nor dead at a marking. We have

• If t ∈ LM and M ′ ∈ [M〉, then t ∈ LM ′ , that is, live transitions stay live.

• If t ∈ DM and M ′ ∈ [M〉, then t ∈ LM ′ , that is, dead transitions stay dead.

• If t 6∈ LM ∪ DM then there is a marking M ′ reachable from M such that t ∈
DM ′ . That is, transitions that are neither live nor dead may die.

Let T be the set of transitions of N . By the definitions above, there is a marking M
reachable from M0 such that T = DM ∪ LM , that is, every transition is either live or

dead at M . For every t ∈ DM there is a place st ∈ •t such that M(st) = 0. Since N
is free-choice, we have (exercise: prove it!): no input transition of st is live a M , that

is, •st ⊆ DM . It follows: the set R = {st | t ∈ T } is a siphon unmarked at M . But

then R does not contain any initially marked trap, because marked traps stay marked.

�

A siphon is minimal if it does not properly contain any proper siphon. Clearly, the

Liveness Theorem still holds if we replace “siphon” by “minimal siphon”. The net of

Figure 5.3 has four minimal siphons: R1 = {s1, s3, s5, s7}, R2 = {s2, s4, s6, s8},
R3 = {s2, s3, s5, s7} and R4 = {s1, s4, s6, s8}. R1, R2, R3 and R4 are also traps,

and so, in particular, they contain traps. By the Liveness Theorem, every marking that

marks R1, R2, R3 and R4 is live.

The liveness problem for free-choice systems is NP-complete, and so we cannot

expect to find a polynomial algorithm to check the condition of Commoner’s Theorem:

Theorem 5.3.4 [Complexity] The problem

Given: A free-choice system (N,M0)
Decide: Is (N,M0) not live?

76CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

s1 s2

s3 s4 s5 s6

s7 s8

Figure 5.3: A free-choice system

is NP-complete.

Proof. The proof is by reduction from SAT, the satisfiability problem for boolean for-

mulas. The reduction is illustrated in Figure 5.4, which shows the free-choice system

for the formula

Φ = (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

�

5.3.2 Boundedness

Definition 5.3.5 (S-component) LetN = (S, T, F) be a net. A subnetN ′ = (S′, T ′, F ′)
of N is an S-component of N if

1. T ′ = •S′ ∪ S′• (where •s = {t ∈ T | (t, s) ∈ F}, and analogously for s•).

2. N ′ is a strongly connected S-net.

Figure 5.5 shows two S-components of the net of Figure 5.3.

S-components are for free-choice systems what circuits are for T-systems: firing a

transition does not change the number of tokens of an S-component.

5.3. FREE-CHOICE SYSTEMS 77

x1x1

A1 A2 A3

x2 x3x2 x3

C1 C2 C3

False

Figure 5.4: Free-choice system for the formula Φ

78CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

s1

s3 s5

s7

s2

s4 s6

s8

Figure 5.5: S-components of the net of Figure 5.3

Proposition 5.3.6 Let (N,M0) be a Petri net and let N ′ = (S′, T ′, F ′) be an S-

component of N . Then M0(S
′) = M(S′) for every marking M reachable from M0.

Proof. Firing a transition either takes no tokens from a place of the component and

adds none, or it takes exactly one token and adds exactly one token. �

Theorem 5.3.7 [Hack’s Boundedness Theorem] Let (N,M0) be a live free-choice sys-

tem. (N,M0) is bounded iff every place of N belongs to a S-component.

Proof. (⇐) Exercise

(⇒) (Sketch). We first show that every minimal siphon N is the set of places of a

S-component. Then we show that every place is contained in some minimal siphon. �

Proposition 5.3.8 [Place bounds] Let (N,M0) be a live and bounded free-choice sys-

tem and let s be a place of N . We have

max{M(s) |M0
∗
−→M} =

min{M0(S
′) | S′ is the set of places of a S-component of N}

5.3. FREE-CHOICE SYSTEMS 79

Figure 5.6: Clusters of the net of Figure 5.3

Proof. Analogous to the Boundedness Theorem for T-systems. �

Theorem 5.3.4 shows that there is no polynomial algorithm for Liveness (unless

P = NP). Now we ask ourselves what is the complexity of deciding if a free-choice

system is simultaneously live and bounded. We can of course first use the decision

procedure for liveness, and then, if the net is live, check the condition of the Bounded-

ness Theorem. But there are more efficient algorithms.1. The fastest known algorithm

runs in O(n ·m) time for a net with n places and m transitions. A not so efficient but

simpler algorithm follows immediately from the next theorem:

Definition 5.3.9 (Cluster) Let N = (S, T, F) be a net. A cluster is an equivalence

class of the equivalence relation ((F ∩ (S × T)) ∪ (F ∩ (S × T))−1)∗.

Figure 5.6 shows the clusters of the net of Figure 5.3.

1Compare with this: in order to decide if a number is divisible by 100.000, we can first check if it is

divisible by 3125, and, if so, if it is divisible by 32. However, there is a faster procedure: check if the last

five digits are zeros.

80CHAPTER 5. PETRI NET CLASSES WITH EFFICIENT DECISION PROCEDURES

Theorem 5.3.10 [The Rank Theorem] A free-choice system (N,M0) is live and bounded

iff

1. N has a positive S-invariant.

2. N has a positive T-invariant.

3. The rank of the incidence matrix (N) is equal to c− 1, where c is the number of

clusters of N .

4. Every siphon of N is marked under M0.

Proof. Omitted. �

Conditions (1) and (2) can be checked using linear programming, condition (3)

using well-known algorithms of linear algebra, and condition (4) with the algorithm of

Section 4.4.1.

5.3.3 Reachability

Theorem 5.3.11 Reachability is NP-complete for live and bounded free-choice nets.

Proof. Exercise: find a reduction from SAT. �

However, for systems satisfying an additional condition there is a polynomial algo-

rithm. A Petri net (N,M0) is cyclic if, loosely speaking, it is always possible to return

to the initial marking. Formally: ∀M ∈ [M0〉 : M0 ∈ [M〉. We have:

Theorem 5.3.12 [Reachability Theorem] Let (N,M0) be a live, bounded, and cyclic

free-choice system. A marking M of N is reachable from M0 iff M0 ∼M .

Proof. Omitted. �

Corollary 5.3.13 The problem

Given: a live, bounded, and cyclic free-choice system (N,M0) and a

marking M
Decide: Is M reachable?

can be solved in polynomial time.

This result is only useful if we are able to check efficiently if a live and bounded

free-choice system is cyclic. The following theorem shows that this is the case:

Theorem 5.3.14 A live and bounded free-choice system (N,M0) is cyclic iff M0 marks

every proper trap of N .

Proof. Omitted. �

