
1 Basic definitions

Definition 1.1 (Net, preset, postset)
A net N = (S, T, F ) consists of a finite set S of places (represented by circles), a finite set T of transitions
disjoint from S (squares), and a flow relation (arrows) F ⊆ (S × T ) ∪ (T × S).

The places and transitions of N are called elements or nodes. The elements of F are called arcs.
Given x ∈ S ∪ T , the set •x = {y | (y, x) ∈ F} is the preset of x and x• = {y | (x, y) ∈ F} is the postset

of x. For X ⊆ S ∪ T we denote •X =
⋃
x∈X

•x and X• =
⋃
x∈X

x•.

Definition 1.2 (Subnet)
N ′ = (S′, T ′, F ′) is a subnet of N = (S, T, F ) if

• S′ ⊆ S,

• T ′ ⊆ T , and

• F ′ = F ∩ ((S′ × T ′) ∪ (T ′ × S′)) (not F ′ ⊆ F ∩ ((S′ × T ′) ∪ (T ′ × S′)) !).

Definition 1.3 (Path, circuit)
A path of a net N = (S, T, F ) is a finite, nonempty sequence x1 . . . xn of nodes of N such that
(x1, x2), . . . , (xn−1, xn) ∈ F . We say that a path x1 . . . xn leads from x1 to xn.

A path is a circuit if (xn, x1) ∈ F and (xi = xj)⇒ i = j for every 1 ≤ i, j ≤ n.
N is connected if (x, y) ∈ (F ∪ F−1)∗ for every x, y ∈ S ∪ T , and strongly connected if (x, y) ∈ F ∗ for

every x, y ∈ S ∪ T .

Proposition 1.4 Let N = (S, T, F ) be a net.

(1) N is connected iff there are no two subnets (S1, T1, F1) and (S2, T2, F2) of N such that

• S1 ∪ T1 6= ∅, S2 ∪ T2 6= ∅;

• S1 ∪ S2 = S, T1 ∪ T2 = T , F1 ∪ F2 = F ;

• S1 ∩ S2 = ∅, T1 ∩ T2 = ∅.

(2) A connected net is strongly connected iff for every (x, y) ∈ F there is a path leading from y to x.

Definition 1.5 (Markings)
Let N = (S, T, F ) be a net. A marking of N is a mapping M : S → IN. Given R ⊆ S we write M(R) =∑
s∈R

M(s). A place s is marked at M if M(s) > 0. A set of places R is marked at M if M(R) > 0, that is, if

at least one place of R is marked at M .

Definition 1.6 (Firing rule, dead markings)
A transition is enabled at a marking M if M(s) ≥ 1 for every place s ∈ •t. If t is enabled, then it can occur or

fire, leading from M to the marking M ′ (denoted M t−→M ′) given by:

M ′(s) =

 M(s)− 1 if s ∈ •t \ t•
M(s) + 1 if s ∈ t• \ •t
M(s) otherwise

A marking is dead if it does not enable any transition.

Definition 1.7 (Firing sequence, reachable marking)
Let N = (S, T, F ) be a net and let M be a marking of N . A finite sequence σ = t1 . . . tn is enabled at a

marking M if there are markings M1,M2, . . . ,Mn such that M
t1−→ M1

t2−→ M2
t3−→ . . .

tn−→ Mn. We
write M σ−→Mn. The empty sequence ε is enabled at any marking and we have M ε−→M .

If M σ−→ M ′ for some markings M,M ′ and some sequence σ, then we write M ∗−→ M ′ and say that M ′

is reachable from M . [M〉 denotes the set of markings that are reachable from M .
An infinite sequence σ = t1t2 . . . is enabled at a marking if there are markings M1,M2, . . . such that

M
t1−→M1

t2−→M2 −→ . . .

Proposition 1.8 A (finite or infinite) sequence σ is enabled at M iff every finite prefix of σ is enabled at M .

Lemma 1.9 [Monotonicity lemma]
Let M and L be two markings of a net.

(1) If M σ−→M ′ for a finite sequence σ, then (M + L)
σ−→ (M ′ + L) for every marking L.

(2) If M σ−→ for an infinite sequence σ, then (M + L)
σ−→ for every marking L.

Definition 1.10 (Petri nets)
A Petri net, net system, or just a system is a pair (N,M0) where N is a connected net N = (S, T, F ) with
nonempty sets of places and transitions, and an initial marking M0 : S → IN. A marking M is reachable in
(N,M0) or a reachable marking of (N,M0) if M0

∗−→M .

Definition 1.11 (Reachability graph)
The reachability graph G of a Petri net (N,M0) where N = (S, T, F ) is the directed, labeled graph satisfying:

• The nodes of G are the reachable markings of (N,M0).

• The edges of G are labeled with transitions from T .

• There is an edge from M to M ′ labeled by t iff M t−→M , that is, iff M enables t and the firing of t leads
from M to M ′.

2 Modelling with Petri nets

Definition 2.1 (Nets with place capacities)
A net with capacities N = (S, T, F,K) consists of a net (S, T, F ) and a mapping K : S → IN.
A transition t is enabled at a marking M of N if

– M(s) ≥ 1 for every place s ∈ •t and
– M(s) < K(s) for every place s ∈ t• \ •t

The notions of firing, Petri net with capacities, etc. are defined as in the capacity-free case.

Definition 2.2 (Nets with weighted arcs)
A net with weighted arcs N = (S, T,W ) consists of two disjoint sets of places and transitions and a weight
function W : (S × T )∪ (T × S)→ IN. A transition t is enabled at a marking M of N if M(s) ≥W (s, t) for
every s ∈ S. If t is enabled then it can occur leading to the marking M ′ defined by

M ′(s) =M(s) +W (t, s)−W (s, t)

for every place s. Other notions are defined as in the standard model.
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Definition 2.3 (Nets with inhibitor arcs)
A net with inhibitor arcs N = (S, T, F, I) consists of two disjoint sets of places and transitions, a set F ⊆
(S × T ) ∪ (T × S) of arcs, and a set I ⊆ S × T , disjoint with F , of inhibitor arcs. A transition t is enabled at
a marking M of N if M(s) > 0 for every place s such that (s, t) ∈ F , and M(s) = 0 for every place s such
that (s, t) ∈ I . If t is enabled then it can occur leading to the marking M ′, defined as for standard Petri nets.

Definition 2.4 (Nets with reset arcs)
A net with reset arcs N = (S, T, F,R) consists of two disjoint sets of places and transitions, a set F ⊆
(S × T ) ∪ (T × S) of arcs, and a set R ⊆ S × T , disjoint with F , of reset arcs. A transition t is enabled at
a marking M of N if M(s) > 0 for every place s such that (s, t) ∈ F ∪ R. If t is enabled then it can occur
leading to the marking obtained after the following operations:

• Remove one token from every place s such that (s, t) ∈ F .

• Remove all tokens from every place s such that (s, t) ∈ R.

• Add one token to every place s such that (t, s) ∈ F .

Definition 2.5 (System properties)
Let (N,M0) be a Petri net.

(N,M0) is deadlock free if every reachable marking enables at least one transition (that is, no reachable
marking is dead).

(N,M0) is live if for every reachable marking M and every transition t there is a marking M ′ ∈ [M〉 that
enables t. (Intuitively: every transition can always fire again).

(N,M0) is bounded, if for every place s there is a number b ≥ 0 such that M(s) ≤ b for every reachable
marking M . M0 is a bounded marking of N if (N,M0) is bounded. The bound of a place s of a bounded Petri
net (N,M0) is the number

max{M(s) |M ∈ [M0〉}
(N,M0) is b-bounded if every place has bound b.

In these notes we study the following problems:

• Deadlock freedom: is a given Petri net (N,M0) deadlock-free?

• Liveness: is a given Petri net (N,M0) live?

• Boundedness: is a given Petri net (N,M0) bounded?

• b-boundedness: given b ∈ N and a Petri net (N,M0), is (N,M0) b-bounded?

• Reachability: given a Petri net (N,M0) and a marking M of N , is M reachable?

• Coverability: given a Petri net (N,M0) and a marking M of N , is there a reachable marking M ′ ≥M?

Proposition 2.6

(1) Liveness implies deadlock freedom.

(2) If (N,M0) is bounded then there is a number b such that (N,M0) is b-bounded.

(3) If (N,M0) is bounded, then it has finitely many reachable markings.

Definition 2.7 (Well-formed nets)
A net N is well formed if there is a marking M0 such that the Petri net (N,M0) is live and bounded.

• Well-formedness: is a given net well formed?

COVERABILITY-GRAPH((S, T, F,M0))
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work : set := {M0};
3 while Work 6= ∅
4 do selectM fromWork ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 M ′ := AddOmegas(M, t,M ′, V, E);
9 if M ′ /∈ V

10 then V := V ∪ {M ′}
11 Work := Work ∪ {M ′};
12 E := E ∪ {(M, t,M ′)};
13 return (V,E, v0);

ADDOMEGAS(M, t,M ′, V, E)
1 for M ′′ ∈ V
2 do if M ′′ < M ′ and M ′′ ∗−→EM
3 then M ′ :=M ′ + ((M ′ −M ′′) · ω);
4 return M ′;

Figure 1: Algorithm for the construction of the coverability graph

3 Decision procedures

Lemma 3.1 (Königs lemma) Let G = (V,E) be the reachability graph of a Petri net (N,M0). If V is infinite,
then G contains an infinite simple path.

Lemma 3.2 (Dickson’s lemma) For every infinite sequence A1A2A3 . . . of vectors of Nk there is an infinite
sequence i1 < i2 < i3 . . . of indices such that Ai1 ≤ Ai2 ≤ Ai3 . . ..

Theorem 3.3 (N,M0) is unbounded iff there are markings M and L such that L 6= 0 and M0
∗−→ M

∗−→
(M + L)

Theorem 3.4 Boundedness is decidable.

Theorem 3.5 COVERABILITY-GRAPH terminates.

Lemma 3.6 For everyω-markingM ′ added by the algorithm to V and for every k > 0, there there is a reachable
marking M ′k satisfying M ′k(s) = M ′(s) for every place s such that M ′(s) ∈ N, and M ′k(s) > k for every
place s such that M ′(s) = ω.

Theorem 3.7 Let (N,M0) be a Petri net and letM be a marking ofN . There is a reachable markingM ′ ≥M
iff the coverability graph of (N,M0) contains an ω-marking M ′′ ≥M .

Definition 3.8 (Integer nets) Let N = (S, T, F ) be a net. A generalized marking of N (g-marking for short) is
a mapping G : S → Z. An integer net is a pair (N,G0) where N is a net and G0 is a g-marking. A g-marking
G enables all transitions, and the occurrence of t at G leads to the marking G′ given by

G′(s) =

 G(s)− 1 if s ∈ •t \ t•
G(s) + 1 if s ∈ t• \ •t
G(s) otherwise

We denote by G
t
↪→ G′ that firing t at G yields to G′.

An integer firing sequence of an integer net is a sequence G0
t1
↪→ G1

t2
↪→ · · ·

tn
↪→ Gm.
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Definition 3.9 Let G ∈ Zk be a g-marking of N and let 0 ≤ i ≤ k. We say that G is i-natural if its first
i-components are natural numbers, i.e., if G(j) ≥ 0 for every 1 ≤ j ≤ i. If moreover G(j) < r for every
1 ≤ j ≤ i, then we say that G is (i, r)-natural.

An integer sequence σ = G0
t1
↪→ · · ·

tm
↪→ Gm is i-natural (respectively (i, r)-natural) if every generalized

marking of σ is i-natural (respectively (i, r)-natural). Given a g-marking G ∈ Zk , we say that σ is (i, G)-
covering if Gm(j) ≥ G(j) for every 1 ≤ j ≤ i.

Theorem 3.10 Let n = max(1, |G(1)|, . . . |G(k)|). For every G0 ∈ Zk , if (N,G0) has a (k,G)-covering,
k-natural sequence, then it has one of length at most (n+ 1)(2k)

k
.

Lemma 3.11 For every G0 ∈ Zk and for every 1 ≤ i ≤ k, if (N,G0) has an (i, G)-covering, i-natural
sequence, then it has one of length at most f(i), where f is inductively defined as follows:

• f(0) = 1, and

• f(i) = (nf(i− 1))i + f(i− 1) for every 1 ≤ i ≤ k.

Definition 3.12 (Upward-closed sets of markings)
A setM of markings of a net N is upward closed if M ∈M and M ′ ≥M imply M ′ ∈M.

A marking M of an upward closed set M is minimal if there is no M ′ ∈ M such that M ′ ≤ M and
M ′ 6=M .

Lemma 3.13 Every upward-closed set of markings has finitely many minimal elements.

Definition 3.14 LetM be a set of markings of a net N = (S, T, F ), and let t ∈ T be a transition. We define

pre(M, t) = {M ′ |M ′ t−→M for some M ∈M}

pre(M) =
⋃
t∈T

pre(M, t)

and further

pre0(M) = M
prei+1(M) = pre

(
prei(M)

)
for every i ≥ 0

pre∗(M) =
∞⋃
i=0

prei(M)

Lemma 3.15 IfM is upward closed, then pre(M) is also upward closed.

Theorem 3.16 LetM be an upward-closed set of markings of a net N . Then there is i ≥ 0 such that

pre∗(M) =
i⋃

j=0

prej(M)

Definition 3.17 Given a setA, and a partial order�⊆ A×A, we say that� is a well-quasi-order (wqo) if every
infinite sequence a1a2a3 · · · ∈ Aω contains an infinite chain ai1 � ai2 � · · · (where i1 < i2 < i3 . . .).

BACK1((S, T, F,M0),M)
1 M := {M ′ |M ′ ≥M};
2 Old M := ∅;
3 while true
4 do Old M :=M;
5 M :=M∪ pre(M);
6 if M0 ∈M
7 then return covered end
8 ifM = Old M
9 then return not covered end

BACK2((S, T, F,M0),M)
1 m := {M};
2 old m := ∅;
3 while true
4 do old m := m;
5 m := min(m ∪

⋃
t∈T pre(m, t));

6 if ∃M ′ ∈ m :M0 ≥M ′
7 then return covered end
8 if m = old m
9 then return not covered end

Figure 2: Backwards reachability algorithm.

Definition 3.18 Let A be a set and let � A× A be a wqo. A set X ⊆ A is upward closed if x ∈ X and x � y
implies y ∈ X for every x, y ∈ A. In particular, given x ∈ A, the set {y ∈ A | y � x} is upward-closed.

A relation→⊆ A×A is monotonic if for every x→ y and every x′ � x there is y′ � y such that x′ → y′.
Given X ⊆ A, we define

pre(X) = {y ∈ A | y → x and x ∈ X}

Further we define:

pre0(X) = X

prei+1(X) = pre
(
prei(X)

)
for every i ≥ 0

pre∗(X) =

∞⋃
i=0

prei(X)

Theorem 3.19 Let A be a set and let � A × A be a wqo. Let X0 ⊆ A be an upward closed set and let
→⊆ A×A be monotonic. Then there is j ∈ N such that

pre∗(X) =

j⋃
i=0

prei(X)

Theorem 3.20 Deadlock freedom, Liveness, Boundedness, b-boundedness, Reachability, and Coverability
are all undecidable for Petri nets with inhibitor arcs.

Definition 3.21 (Semilinear set) A set X ⊆ Nk is linear if there is r ∈ Nk (the root) and a finite set P ⊆ Nk
(the periods) such that

X = {r +
∑
p∈P

λpp}

A semilinear set is a finite union of linear sets.

Theorem 3.22 [Leroux 12] Let (N,M0) be a Petri net and let M be a marking of M . If M is not reachable
from M0, then there exists a semilinear setM of markings of N such that

(a) M0 ∈M,

(b) if M ∈M and M t−→M ′ for some transition t of N , then M ′ ∈M, and

(c) M /∈M.
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P: Given a Petri net (N,M0) and a subsetR of places ofN , is there a reachable markingM such that
M(s) = 0 for every s ∈ R?

Theorem 3.23 Deadlock-freedom can be reduced to P.

Theorem 3.24 P can be reduced to Reachability.

Proposition 3.25 Let (N,M0) be a bounded Petri net. (N,M0) is live iff for every bottom SCC of the reacha-
bility graph of (N,M0) and for every transition t, some marking of the SCC enables t.

4 Semi-decision procedures
Definition 4.1 (Incidence matrix)
Let N = (S, T, F ) be a net. The incidence matrix N : (S × T )→ {−1, 0, 1} is given by

N(s, t) =


0 if (s, t) 6∈ F and (t, s) 6∈ F or

(s, t) ∈ F and (t, s) ∈ F
−1 if (s, t) ∈ F and (t, s) 6∈ F
1 if (s, t) 6∈ F and (t, s) ∈ F

The column N(−, t) is denoted by t, and the row N(s,−) by s.

Definition 4.2 (Parikh-vector of a sequence of transitions)
Let N = (S, T, F ) be a net and let σ be a finite sequence of transitions. The Parikh-vector ~σ : T → IN von σ is
defined by

~σ(t) = number of occurrences of t in σ

Lemma 4.3 (Marking Equation Lemma)
Let N be a net and let M σ−→M ′ be a firing sequence of N . Then M ′ =M +N · ~σ.

Definition 4.4 (The Marking Equation)
The Marking Equation of a Petri net (N,M0) is M =M0 +N ·X with variables M and X .

Proposition 4.5 (A sufficient condition for boundedness)
Let (N,M0) be a Petri net. If the optimization problem

maximize
∑
s∈S

M(s)

subject to M =M0 +N ·X

has an optimal solution, then (N,M0) is bounded.

Proposition 4.6 (A sufficient condition for non-reachability)
Let (N,M0) be a Petri net and let L be a marking of N . If the equation

L =M0 +N ·X (with only X as variable)

has no solution, then L is not reachable from M0.

Proposition 4.7 (A sufficient condition for deadlock-freedom)
Let (N,M0) be a 1-bounded Petri net where N = (S, T, F ). If the following system of inequations has no
solution then (N,M0) is deadlock-free.

M =M0 +N ·X∑
s∈·t

M(s) < |•t| for every transition t.

Definition 4.8 (S-invariants)
Let N = (S, T, F ) be a net. An S-invariant of N is a vector I : S → Q such that I ·N = 0.

Proposition 4.9 (Fundamental property of S-invariants)
Let (N,M0) be a Petri net and let I be a S-invariant of N . If M0

∗−→M , then I ·M = I ·M0.

Proposition 4.10 The S-invariants of a net form a vector space over the real numbers.

Proposition 4.11 I is an S-invariant of N = (S, T, F ) iff. ∀t ∈ T :
∑
s∈•t

I(s) =
∑
s∈t•

I(s).

Definition 4.12 (Semi-positive and positive S-invariants)
Let I be an S-invariant of N = (S, T, F ). I is semi-positive if I ≥ 0 and I 6= 0, and positive if I > 0 (that is,
if I(s) > 0 for every s ∈ S). The support of an S-invariant is the set 〈I〉 = {s ∈ S | I(s) > 0}.

Proposition 4.13 [A sufficient condition for boundedness]
Let (N,M0) be a Petri net. If N has a positive S-invariant I , then (N,M0) is bounded. More precisely:
(N,M0) is n-bounded for

n = max

{
I ·M0

I(s)
| s is a place of N

}
Proposition 4.14 [A necessary condition for liveness]
If (N,M0) is live, then I ·M0 > 0 for every semi-positive S-invariant of N .

Definition 4.15 (The ∼ relation)
Let M and L be markings and let I be a S-invariant of a net N . M und L agree on I if I ·M = I ·L. We write
M ∼ L if M and L agree on all invariants of N .

Proposition 4.16 [A necessary condition for reachability]
Let (N,M0) be a Petri net. M ∼M0 holds for every M ∈ [M0〉.

Theorem 4.17 Let N be a net and let M,L be two markings of N .
M ∼ L iff the equation M = L+N ·X has a rational solution.

Definition 4.18 (T-invariants)
Let N = (S, T, F ) be a net. A vector J : T → Q is a T-invariant of N if N · J = 0.

Proposition 4.19 J is a T-invariant of N = (S, T, F ) iff ∀s ∈ S :
∑
t∈•s

J(t) =
∑
t∈s•

J(t).

Proposition 4.20 [Fundamental property of T-invariants]
Let N be a net, let M be a marking of N , and let σ be a sequence of transitions of N enabled at M . The vector
~σ is a T-invariant of N iff M σ−→M .

Theorem 4.21 [Necessary condition for well-formedness]
Every well-formed net has a positive T-invariant.

Definition 4.22 (Siphon)
Let N = (S, T, F ) be a net. A set R ⊆ S of places is a siphon of N if •R ⊆ R•. A siphon R is proper if
R 6= ∅.

Proposition 4.23 [Fundamental property of siphons]
Let R be a siphon of a net N , and let M σ−→M ′ be a firing sequence of N . If M(R) = 0, then M ′(R) = 0.

4



Corollary 4.24 [A necessary condition for reachability]
If M is reachable in (N,M0), then for every siphon R, if M0(R) = 0 then M(R) = 0.

Input: A net N = (S, T, F ) and R ⊆ S.
Output: The largest siphon Q ⊆ R.
Initialization: Q := R.

begin
while there are s ∈ Q and t ∈ •s such that t /∈ Q• do

Q : = Q \ {s}
endwhile

end

Proposition 4.25 [A necessary condition for liveness]
If (N,M0) is live, then M0 marks every proper siphon of N .

Proposition 4.26 If M is a dead marking of N , then the set of places unmarked at M is a siphon of N .

Corollary 4.27 [A sufficient condition for deadlock-freedom] Let (N,M0) be a Petri net. If every reachable
marking marks all siphons of N , then (N,M0) is deadlock-free.

Definition 4.28 (Trap)
Let N = (S, T, F ) be a trap. A set R ⊆ S of places is a trap if R• ⊆ •R. A trap R is proper if R 6= ∅.

Proposition 4.29 [Fundamental property of traps]
Let R be a trap of a net N and let M σ−→M ′ be a firing sequence of N . If M(R) > 0, then M ′(R) > 0.

Corollary 4.30 [A necessary condition for reachability]
If M is reachable in (N,M0), then for every trap R, if M0(R) > 0 then M(R) > 0.

Proposition 4.31 [A sufficient condition for deadlock-freedom]
Let (N,M0) be a Petri net. If every proper siphon of N contains a trap marked at M0, then (N,M0) is
deadlock-free.

5 Petri net classes with efficient decision procedures
Definition 5.1 (S-nets, S-systems) A netN = (S, T, F ) is a S-net if |•t| = 1 = |t•| for every transition t ∈ T .
A Petri net (N,M0) is a S-system if N if N is a S-net.

Proposition 5.2 (Fundamental property of S-systems)
Let (N,M0) be a S-system with N = (S, T, F ). Then M0(S) =M(S) for every reachable marking M .

Theorem 5.3 [Liveness Theorem] A S-system (N,M0) whereN = (S, T, F ) is live iffN is strongly connected
and M0(S) > 0.

Theorem 5.4 [Boundedness Theorem] A live S-system (N,M0) where N = (S, T, F ) is b-bounded iff
M0(S) ≤ b.

Theorem 5.5 [Reachability Theorem] Let (N,M0) be a live S-system and let M be a marking of N . M is
reachable from M0 iff M0(S) =M(S).

Proposition 5.6 [S-invariants of S-nets] Let N = (S, T, F ) be a connected S-net. A vector I : S → Q is a
S-invariant of N iff I = (x, . . . , x) for some x ∈ Q.

Definition 5.7 (T-nets, T-systems) A net N = (S;T, F ) is a T-net if |•s| = 1 = |s•| for every place s ∈ S. A
system (N,M0) is a T-system if N is a T-net.

Proposition 5.8 (Fundamental property of T-systems) Let γ be a circuit of a T-systems (N,M0) and let M
be a reachable marking. Then M(γ) =M0(γ).

Theorem 5.9 [Liveness Theorem] A T-system (N,M0) is live iff M0(γ) > 0 for every circuit γ of N .

Theorem 5.10 [Boundedness Theorem] A place s of a live T-system (N,M0) is b-bounded iff it belongs to some
circuit γ such that M0(γ) ≤ b.

Corollary 5.11 Let (N,M0) be a live T-system

1. A place of N is bounded iff it belongs to some circuit.

2. Let s be a bounded place. Then

max{M(s) |M0
∗−→M} = min{M0(γ) | γ contains s}

3. (N,M0) is bounded iff N is strongly connected.

Proposition 5.12 [T-invariants of T-nets] Let N = (S, T, F ) be a connected T-net. A vector J : T → Q is a
T-invariant iff J = (x . . . x) for some x ∈ Q.

Theorem 5.13 [Reachability Theorem] Let (N,M0) be a live T-system. A marking M is reachable from M0 iff
M0 ∼M .

Theorem 5.14 Let N be a strongly connected T-net. For every marking M0 the following statements are equiv-
alent:

(1) (N,M0) is live.

(2) (N,M0) is deadlock-free.

(3) (N,M0) has an infinite firing sequence.

Theorem 5.15 [Genrich’s Theorem] Let N be a strongly connected T-net with at least one place and one transi-
tion. There is a marking M0 such that (N,M0) is live and 1-bounded.

Definition 5.16 (Free-Choice nets, Free-Choice systems) A net N = (S, T, F ) is free-choice if s• × •t ⊆ F
for every s ∈ S and t ∈ T such that (s, t) ∈ F . A Petri net (N,M0) is free-choice if N is a free-choice net..

Proposition 5.17 [Alternative definitions of free-choice nets]

(1) A net is free-choice if for every two transitions t1, t2:

(t1 6= t2 ∧ •t1 ∩ •t2 6= ∅)⇒ •t1 = •t2

(2) A net is free-choice if for every two places s1, s2:

(s1 6= s2 ∧ s•1 ∩ s•2 6= ∅)⇒ s•1 = s•2

Theorem 5.18 [Commoner’s Liveness Theorem] A free-choice system (N,M0) is live iff every siphon of N
contains a trap marked at M0.
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Theorem 5.19 [Complexity] The problem

Given: A free-choice system (N,M0)
Decide: Is (N,M0) not live?

is NP-complete.

Definition 5.20 (S-component) Let N = (S, T, F ) be a net. A subnet N ′ = (S′, T ′, F ′) of N is an S-
component of N if

1. T ′ = •S′ ∪ S′• (where •s = {t ∈ T | (t, s) ∈ F}, and analogously for s•).

2. N ′ is a strongly connected S-net.

Proposition 5.21 Let (N,M0) be a Petri net and let N ′ = (S′, T ′, F ′) be an S-component of N . Then
M0(S′) =M(S′) for every marking M reachable from M0.

Theorem 5.22 [Hack’s Boundedness Theorem] Let (N,M0) be a live free-choice system. (N,M0) is bounded
iff every place of N belongs to a S-component.

Proposition 5.23 [Place bounds] Let (N,M0) be a live and bounded free-choice system and let s be a place of
N . We have

max{M(s) |M0
∗−→M} =

min{M0(S′) | S′ is the set of places of a S-component of N}

Definition 5.24 (Cluster) Let N = (S, T, F ) be a net. A cluster is an equivalence class of the equivalence
relation ((F ∩ (S × T )) ∪ (F ∩ (S × T ))−1)∗.

Theorem 5.25 [The Rank Theorem] A free-choice system (N,M0) is live and bounded iff

1. N has a positive S-invariant.

2. N has a positive T-invariant.

3. The rank of the incidence matrix (N) is equal to c− 1, where c is the number of clusters of N .

4. Every siphon of N is marked under M0.

Theorem 5.26 Reachability is NP-complete for live and bounded free-choice nets.

Theorem 5.27 [Reachability Theorem] Let (N,M0) be a live, bounded, and cyclic free-choice system. A mark-
ing M of N is reachable from M0 iff M0 ∼M .

Corollary 5.28 The problem

Given: a live, bounded, and cyclic free-choice system (N,M0) and a marking M
Decide: Is M reachable?

can be solved in polynomial time.

Theorem 5.29 A live and bounded free-choice system (N,M0) is cyclic iff M0 marks every proper trap of N .

6 Definitions and theorems from the exercises
Definition 6.1 (Cyclic Petri nets) A Petri net (N,M0) is cyclic if, loosely speaking, it is always possible to return
to the initial marking. Formally: ∀M ∈ [M0〉 :M0 ∈ [M〉.

Lemma 6.2 (Exchange Lemma) Let u and v be transitions of a net satisfying •u ∩ v• = ∅. If M vu−−→ M ′

then M uv−−→M ′.

Theorem 6.3 (Strong Connectedness Theorem) Let (N,M0) be a live and bounded Petri net. N is strongly
connected.

Definition 6.4 (Home marking) Let (N,M0) be a Petri net. A marking M of the net N is a home marking of
(N,M0) if it is reachable from every marking of [M0〉.

We say that (N,M0) has a home marking if some reachable marking is a home marking.

Definition 6.5 (Nets with transfer arcs) A net with transfer arcs N = (S, T, F,R) consists of two disjoint sets
of places and transitions, a set F ⊆ (S × T ) ∪ (T × S) of arcs, and a set R ⊆ (S × T ) ∪ (T × S), disjoint
from F, of transfer arcs.

A transition t is enabled at a marking M of N if M(s) > 0 for every place s such that (s, t) ∈ F ∪R. If t is
enabled then it can occur leading to the marking M ′ obtained after the following operations:

1. Let k be the sum of the tokens in all places s such that (s, t) ∈ R, i.e., k :=
∑
{s∈S|(s,t)∈R}M(s).

2. Remove one token from every place s such that (s, t) ∈ F .

3. Remove all tokens from every place s such that (s, t) ∈ R.

4. Add one token to every place s such that (t, s) ∈ F .

5. Add k tokens to every place s such that (t, s) ∈ R.

Definition 6.6 (Zero-reachability problem) For a Petri net (N,M0), is there a marking M ∈ [M0〉 with
M(s) = 0 for all s ∈ S?

Lemma 6.7 (Reproduction lemma) Let (N,M0) be a bounded system and let M0
σ−→ be an infinite occurence

sequence.

1. There exists sequences σ1, σ2, σ3 such that σ = σ1σ2σ3, σ2 is not the empty sequence and

M0
σ1−−→M

σ2−−→M
σ3−−→

for some marking M .

2. There exists a semi-positive T-invariant J such that 〈J〉 ⊆ A(σ), where A(σ) is the set of transitions
appearing in σ.

Proposition 6.8 Let N be a net and R a set of places of N . R is a trap of N iff for all markings M of N , if
M(R) > 0, then M ′(R) > 0 for all M ′ ∈ [M〉.

Corollary 6.9 Let (N,M0) be a live T-system, M a marking of N and X : T → N a vector such that M =

M0 +N ·X . There is an occurence sequence M0
σ−→M such that ~σ = X .
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