1 Basic definitions

Definition 1.1 (Net, preset, postset)

A net N = (S, T, F) consists of a finite set S of places (represented by circles), a finite set T of transitions disjoint from S (squares), and a *flow relation* (arrows) $F \subseteq (S \times T) \cup (T \times S)$.

The places and transitions of N are called *elements* or *nodes*. The elements of F are called *arcs*. Given $x \in S \cup T$, the set $\bullet x = \{y \mid (y, x) \in F\}$ is the preset of x and $x^{\bullet} = \{y \mid (x, y) \in F\}$ is the postset of x. For $X \subseteq S \cup T$ we denote $\bullet X = \bigcup_{x \in X} \bullet^{\bullet} x$ and $X \bullet = \bigcup_{x \in X} x^{\bullet}$.

Definition 1.2 (Subnet)

N' = (S', T', F') is a subnet of N = (S, T, F) if

- $S' \subset S$.
- $T' \subseteq T$, and
- $F' = F \cap ((S' \times T') \cup (T' \times S')) \text{ (not } F' \subseteq F \cap ((S' \times T') \cup (T' \times S')) \text{ !).}$

Definition 1.3 (Path. circuit)

A path of a net N = (S,T,F) is a finite, nonempty sequence $x_1 \dots x_n$ of nodes of N such that $(x_1, x_2), \ldots, (x_{n-1}, x_n) \in F$. We say that a path $x_1 \ldots x_n$ leads from x_1 to x_n .

A path is a *circuit* if $(x_n, x_1) \in F$ and $(x_i = x_j) \Rightarrow i = j$ for every $1 \le i, j \le n$.

N is connected if $(x, y) \in (F \cup F^{-1})^*$ for every $x, y \in S \cup T$, and strongly connected if $(x, y) \in F^*$ for every $x, y \in S \cup T$.

Proposition 1.4 Let N = (S, T, F) be a net.

(1) N is connected iff there are no two subnets (S_1, T_1, F_1) and (S_2, T_2, F_2) of N such that

- $S_1 \cup T_1 \neq \emptyset, S_2 \cup T_2 \neq \emptyset;$
- $S_1 \cup S_2 = S, T_1 \cup T_2 = T, F_1 \cup F_2 = F;$
- $S_1 \cap S_2 = \emptyset, T_1 \cap T_2 = \emptyset.$

(2) A connected net is strongly connected iff for every $(x, y) \in F$ there is a path leading from y to x.

Definition 1.5 (Markings)

Let N = (S, T, F) be a net. A marking of N is a mapping $M: S \to \mathbb{N}$. Given $R \subseteq S$ we write M(R) = $\sum M(s)$. A place s is marked at M if M(s) > 0. A set of places R is marked at M if M(R) > 0, that is, if $s \in R$

at least one place of R is marked at M.

Definition 1.6 (Firing rule, dead markings)

A transition is *enabled* at a marking M if M(s) > 1 for every place $s \in {}^{\bullet}t$. If t is enabled, then it can *occur* or *fire*, leading from M to the marking M' (denoted $M \xrightarrow{t} M'$) given by:

$$M'(s) = \begin{cases} M(s) - 1 & \text{if } s \in {}^{\bullet}t \setminus t^{\bullet} \\ M(s) + 1 & \text{if } s \in t^{\bullet} \setminus {}^{\bullet}t \\ M(s) & \text{otherwise} \end{cases}$$

A marking is *dead* if it does not enable any transition.

Definition 1.7 (Firing sequence, reachable marking)

Let N = (S, T, F) be a net and let M be a marking of N. A finite sequence $\sigma = t_1 \dots t_n$ is enabled at a marking M if there are markings M_1, M_2, \ldots, M_n such that $M \xrightarrow{t_1} M_1 \xrightarrow{t_2} M_2 \xrightarrow{t_3} \ldots \xrightarrow{t_n} M_n$. We write $M \xrightarrow{\sigma} M_n$. The empty sequence ϵ is enabled at any marking and we have $M \xrightarrow{\epsilon} M$.

If $M \xrightarrow{\sigma} M'$ for some markings M, M' and some sequence σ , then we write $M \xrightarrow{*} M'$ and say that M'is reachable from M. $[M\rangle$ denotes the set of markings that are reachable from M.

An infinite sequence $\sigma = t_1 t_2 \dots$ is enabled at a marking if there are markings M_1, M_2, \dots such that $M \xrightarrow{t_1} M_1 \xrightarrow{t_2} M_2 \longrightarrow \dots$

Proposition 1.8 A (finite or infinite) sequence σ is enabled at M iff every finite prefix of σ is enabled at M.

Lemma 1.9 [Monotonicity lemma] Let M and L be two markings of a net.

(1) If $M \xrightarrow{\sigma} M'$ for a finite sequence σ , then $(M + L) \xrightarrow{\sigma} (M' + L)$ for every marking L.

(2) If $M \xrightarrow{\sigma}$ for an infinite sequence σ , then $(M + L) \xrightarrow{\sigma}$ for every marking L.

Definition 1.10 (Petri nets)

A Petri net, net system, or just a system is a pair (N, M_0) where N is a connected net N = (S, T, F) with nonempty sets of places and transitions, and an *initial marking* $M_0: S \to \mathbb{N}$. A marking M is *reachable in* (N, M_0) or a reachable marking of (N, M_0) if $M_0 \xrightarrow{*} M$.

Definition 1.11 (Reachability graph)

The reachability graph G of a Petri net (N, M_0) where N = (S, T, F) is the directed, labeled graph satisfying:

- The nodes of G are the reachable markings of (N, M_0) .
- The edges of G are labeled with transitions from T.
- There is an edge from M to M' labeled by t iff $M \xrightarrow{t} M$, that is, iff M enables t and the firing of t leads from M to M'.

2 Modelling with Petri nets

Definition 2.1 (Nets with place capacities)

A net with capacities N = (S, T, F, K) consists of a net (S, T, F) and a mapping $K \colon S \to \mathbb{N}$. A transition t is *enabled* at a marking M of N if -M(s) > 1 for every place $s \in {}^{\bullet}t$ and -M(s) < K(s) for every place $s \in t^{\bullet} \setminus {\bullet}t$

The notions of firing, Petri net with capacities, etc. are defined as in the capacity-free case.

Definition 2.2 (Nets with weighted arcs)

A net with weighted arcs N = (S, T, W) consists of two disjoint sets of places and transitions and a weight function $W: (S \times T) \cup (T \times S) \to \mathbb{N}$. A transition t is enabled at a marking M of N if $M(s) \ge W(s,t)$ for every $s \in S$. If t is enabled then it can *occur* leading to the marking M' defined by

M'(s) = M(s) + W(t,s) - W(s,t)

for every place s. Other notions are defined as in the standard model.

Definition 2.3 (Nets with inhibitor arcs)

A net with inhibitor arcs N = (S, T, F, I) consists of two disjoint sets of places and transitions, a set $F \subseteq (S \times T) \cup (T \times S)$ of arcs, and a set $I \subseteq S \times T$, disjoint with F, of *inhibitor arcs*. A transition t is *enabled* at a marking M of N if M(s) > 0 for every place s such that $(s, t) \in F$, and M(s) = 0 for every place s such that $(s, t) \in I$. If t is enabled then it can occur leading to the marking M', defined as for standard Petri nets.

Definition 2.4 (Nets with reset arcs)

A net with reset arcs N = (S, T, F, R) consists of two disjoint sets of places and transitions, a set $F \subseteq (S \times T) \cup (T \times S)$ of arcs, and a set $R \subseteq S \times T$, disjoint with F, of reset arcs. A transition t is enabled at a marking M of N if M(s) > 0 for every place s such that $(s, t) \in F \cup R$. If t is enabled then it can occur leading to the marking obtained after the following operations:

• Remove one token from every place s such that $(s, t) \in F$.

- Remove all tokens from every place s such that $(s, t) \in R$.
- Add one token to every place s such that $(t, s) \in F$.

Definition 2.5 (System properties)

Let (N, M_0) be a Petri net.

 (N, M_0) is *deadlock free* if every reachable marking enables at least one transition (that is, no reachable marking is dead).

 (N, M_0) is *live* if for every reachable marking M and every transition t there is a marking $M' \in [M\rangle$ that enables t. (Intuitively: every transition can always fire again).

 (N, M_0) is *bounded*, if for every place s there is a number $b \ge 0$ such that $M(s) \le b$ for every reachable marking M. M_0 is a *bounded marking of* N if (N, M_0) is bounded. The *bound* of a place s of a bounded Petri net (N, M_0) is the number

 $max\{M(s) \mid M \in [M_0\rangle\}$

 (N, M_0) is *b*-bounded if every place has bound *b*.

In these notes we study the following problems:

- **Deadlock freedom**: is a given Petri net (N, M_0) deadlock-free?
- Liveness: is a given Petri net (N, M_0) live?
- **Boundedness**: is a given Petri net (N, M_0) bounded?
- *b*-boundedness: given $b \in \mathbb{N}$ and a Petri net (N, M_0) , is (N, M_0) *b*-bounded?
- **Reachability**: given a Petri net (N, M_0) and a marking M of N, is M reachable?
- Coverability: given a Petri net (N, M_0) and a marking M of N, is there a reachable marking $M' \ge M$?

Proposition 2.6

(1) Liveness implies deadlock freedom.

(2) If (N, M_0) is bounded then there is a number b such that (N, M_0) is b-bounded.

(3) If (N, M_0) is bounded, then it has finitely many reachable markings.

Definition 2.7 (Well-formed nets)

A net N is well formed if there is a marking M_0 such that the Petri net (N, M_0) is live and bounded.

• Well-formedness: is a given net well formed?

COVERABILITY-GRAPH $((S, T, F, M_0))$ $(V, E, v_0) := (\{M_0\}, \emptyset, M_0);$ *Work* : set := $\{M_0\}$; 2 3 while $Work \neq \emptyset$ 4 **do** select *M* from *Work*; Work := Work $\setminus \{M\};$ 5 for $t \in enabled(M)$ 6 7 do $M' := \operatorname{fire}(M, t)$: 8 $M' := \mathsf{AddOmegas}(M, t, M', V, E);$ 9 if $M' \notin V$ 10 then $V := V \cup \{M'\}$ 11 $Work := Work \cup \{M'\};$ 12 $E := E \cup \{(M, t, M')\};$ 13 **return** (V, E, v_0) ;

Figure 1: Algorithm for the construction of the coverability graph

3 Decision procedures

Lemma 3.1 (Königs lemma) Let G = (V, E) be the reachability graph of a Petri net (N, M_0) . If V is infinite, then G contains an infinite simple path.

Lemma 3.2 (Dickson's lemma) For every infinite sequence $A_1A_2A_3...$ of vectors of \mathbb{N}^k there is an infinite sequence $i_1 < i_2 < i_3...$ of indices such that $A_{i_1} \leq A_{i_2} \leq A_{i_3}...$

Theorem 3.3 (N, M_0) is unbounded iff there are markings M and L such that $L \neq 0$ and $M_0 \xrightarrow{*} M \xrightarrow{*} (M + L)$

Theorem 3.4 Boundedness *is decidable.*

Theorem 3.5 COVERABILITY-GRAPH terminates.

Lemma 3.6 For every ω -marking M' added by the algorithm to V and for every k > 0, there there is a reachable marking M'_k satisfying $M'_k(s) = M'(s)$ for every place s such that $M'(s) \in \mathbb{N}$, and $M'_k(s) > k$ for every place s such that $M'(s) = \omega$.

Theorem 3.7 Let (N, M_0) be a Petri net and let M be a marking of N. There is a reachable marking $M' \ge M$ iff the coverability graph of (N, M_0) contains an ω -marking $M'' \ge M$.

Definition 3.8 (Integer nets) Let N = (S, T, F) be a net. A generalized marking of N (g-marking for short) is a mapping $G: S \to \mathbb{Z}$. An integer net is a pair (N, G_0) where N is a net and G_0 is a g-marking. A g-marking G enables all transitions, and the occurrence of t at G leads to the marking G' given by

$$G'(s) = \begin{cases} G(s) - 1 & \text{if } s \in {}^{\bullet}t \setminus t^{\bullet} \\ G(s) + 1 & \text{if } s \in t^{\bullet} \setminus {}^{\bullet}t \\ G(s) & \text{otherwise} \end{cases}$$

We denote by $G \stackrel{t}{\hookrightarrow} G'$ that firing t at G yields to G'.

An integer firing sequence of an integer net is a sequence $G_0 \stackrel{t_1}{\hookrightarrow} G_1 \stackrel{t_2}{\hookrightarrow} \cdots \stackrel{t_n}{\hookrightarrow} G_m$.

ADDOMEGAS(M, t, M', V, E)1 for $M'' \in V$ 2 do if M'' < M' and $M'' \xrightarrow{*}_E M$ 3 then $M' := M' + ((M' - M'') \cdot \omega);$ 4 return M': **Definition 3.9** Let $G \in \mathbb{Z}^k$ be a g-marking of N and let $0 \le i \le k$. We say that G is *i*-natural if its first *i*-components are natural numbers, i.e., if $G(j) \ge 0$ for every $1 \le j \le i$. If moreover G(j) < r for every $1 \le j \le i$, then we say that G is (i, r)-natural.

An integer sequence $\sigma = G_0 \stackrel{t_1}{\hookrightarrow} \cdots \stackrel{t_m}{\hookrightarrow} G_m$ is *i*-natural (respectively (i, r)-natural) if every generalized marking of σ is *i*-natural (respectively (i, r)-natural). Given a g-marking $G \in \mathbb{Z}^k$, we say that σ is (i, G)-covering if $G_m(j) \ge G(j)$ for every $1 \le j \le i$.

Theorem 3.10 Let $n = \max(1, |G(1)|, \dots, |G(k)|)$. For every $G_0 \in \mathbb{Z}^k$, if (N, G_0) has a (k, G)-covering, k-natural sequence, then it has one of length at most $(n + 1)^{(2k)^k}$.

Lemma 3.11 For every $G_0 \in \mathbb{Z}^k$ and for every $1 \le i \le k$, if (N, G_0) has an (i, G)-covering, *i*-natural sequence, then it has one of length at most f(i), where f is inductively defined as follows:

- f(0) = 1, and
- $f(i) = (nf(i-1))^i + f(i-1)$ for every $1 \le i \le k$.

Definition 3.12 (Upward-closed sets of markings)

A set \mathcal{M} of markings of a net N is upward closed if $M \in \mathcal{M}$ and $M' \geq M$ imply $M' \in \mathcal{M}$.

A marking M of an upward closed set \mathcal{M} is *minimal* if there is no $M' \in \mathcal{M}$ such that $M' \leq M$ and $M' \neq M$.

Lemma 3.13 Every upward-closed set of markings has finitely many minimal elements.

Definition 3.14 Let \mathcal{M} be a set of markings of a net N = (S, T, F), and let $t \in T$ be a transition. We define

$$pre(\mathcal{M}, t) = \{M' \mid M' \xrightarrow{\iota} M \text{ for some } M \in \mathcal{M}\}$$
$$pre(\mathcal{M}) = \bigcup_{t \in T} pre(\mathcal{M}, t)$$

and further

$$pre^{0}(\mathcal{M}) = \mathcal{M}$$

$$pre^{i+1}(\mathcal{M}) = pre(pre^{i}(\mathcal{M})) \text{ for every } i \ge 0$$

$$pre^{*}(\mathcal{M}) = \bigcup_{i=0}^{\infty} pre^{i}(\mathcal{M})$$

Lemma 3.15 If \mathcal{M} is upward closed, then $pre(\mathcal{M})$ is also upward closed.

Theorem 3.16 Let \mathcal{M} be an upward-closed set of markings of a net N. Then there is $i \geq 0$ such that

$$pre^*(\mathcal{M}) = \bigcup_{j=0}^i pre^j(\mathcal{M})$$

Definition 3.17 Given a set A, and a partial order $\preceq \subseteq A \times A$, we say that \preceq is a well-quasi-order (wqo) if every infinite sequence $a_1a_2a_3\cdots \in A^{\omega}$ contains an infinite chain $a_{i_1} \preceq a_{i_2} \preceq \cdots$ (where $i_1 < i_2 < i_3 \ldots$).

 $BACK1((S, T, F, M_0), M)$ $BACK2((S, T, F, M_0), M)$ 1 $\mathcal{M} := \{M' \mid M' > M\};$ 1 $m := \{M\};$ 2 $old_m := \emptyset$: 2 $Old_{\mathcal{M}} := \emptyset$: 3 while true 3 while true 4 do $Old_{\mathcal{M}} := \mathcal{M}$: do $old_m := m$: 5 $m := \min(m \cup \bigcup_{t \in T} pre(m, t));$ $\mathcal{M} := \mathcal{M} \cup pre(\mathcal{M});$ if $\exists M' \in m : M_0 \ge M'$ 6 if $M_0 \in \mathcal{M}$ 6 7 then return covered end 7 then return covered end 8 if $\mathcal{M} = Old_{\mathcal{M}}$ 8 if $m = old_{-}m$ 9 then return not covered end 9 then return not covered end

Figure 2: Backwards reachability algorithm.

Definition 3.18 Let A be a set and let $\leq A \times A$ be a wqo. A set $X \subseteq A$ is upward closed if $x \in X$ and $x \leq y$ implies $y \in X$ for every $x, y \in A$. In particular, given $x \in A$, the set $\{y \in A \mid y \succeq x\}$ is upward-closed. A relation $\rightarrow \subseteq A \times A$ is monotonic if for every $x \rightarrow y$ and every $x' \succeq x$ there is $y' \succeq y$ such that $x' \rightarrow y'$. Given $X \subseteq A$, we define

$$pre(X) = \{ y \in A \mid y \to x \text{ and } x \in X \}$$

Further we define:

$$pre^{0}(X) = X$$

$$pre^{i+1}(X) = pre(pre^{i}(X)) \text{ for every } i \ge 0$$

$$pre^{*}(X) = \bigcup_{i=0}^{\infty} pre^{i}(X)$$

Theorem 3.19 Let A be a set and let $\leq A \times A$ be a wqo. Let $X_0 \subseteq A$ be an upward closed set and let $\rightarrow \subseteq A \times A$ be monotonic. Then there is $j \in \mathbb{N}$ such that

$$pre^*(X) = \bigcup_{i=0}^{j} pre^i(X)$$

Theorem 3.20 Deadlock freedom, Liveness, Boundedness, b-boundedness, Reachability, and Coverability are all undecidable for Petri nets with inhibitor arcs.

Definition 3.21 (Semilinear set) A set $X \subseteq \mathbb{N}^k$ is *linear* if there is $r \in \mathbb{N}^k$ (the root) and a finite set $P \subseteq \mathbb{N}^k$ (the periods) such that

$$X = \{r + \sum_{p \in P} \lambda_p p\}$$

A semilinear set is a finite union of linear sets.

Theorem 3.22 [Leroux 12] Let (N, M_0) be a Petri net and let M be a marking of M. If M is not reachable from M_0 , then there exists a semilinear set M of markings of N such that

(a) $M_0 \in \mathcal{M}$,

(b) if $M \in \mathcal{M}$ and $M \xrightarrow{t} M'$ for some transition t of N, then $M' \in \mathcal{M}$, and

(c)
$$M \notin \mathcal{M}$$
.

P: Given a Petri net (N, M_0) and a subset R of places of N, is there a reachable marking M such that M(s) = 0 for every $s \in R$?

Theorem 3.23 Deadlock-freedom can be reduced to P.

Theorem 3.24 P can be reduced to Reachability.

Proposition 3.25 Let (N, M_0) be a bounded Petri net. (N, M_0) is live iff for every bottom SCC of the reachability graph of (N, M_0) and for every transition t, some marking of the SCC enables t.

4 Semi-decision procedures

Definition 4.1 (Incidence matrix)

Let N = (S, T, F) be a net. The *incidence matrix* $\mathbf{N} : (S \times T) \rightarrow \{-1, 0, 1\}$ is given by

$$\mathbf{N}(s,t) = \begin{cases} 0 & \text{if} \quad (s,t) \notin F \text{ and } (t,s) \notin F \text{ or} \\ (s,t) \in F \text{ and } (t,s) \in F \\ -1 & \text{if} \quad (s,t) \in F \text{ and } (t,s) \notin F \\ 1 & \text{if} \quad (s,t) \notin F \text{ and } (t,s) \in F \end{cases}$$

The column N(-, t) is denoted by t, and the row N(s, -) by s.

Definition 4.2 (Parikh-vector of a sequence of transitions)

Let N = (S, T, F) be a net and let σ be a finite sequence of transitions. The *Parikh-vector* $\vec{\sigma} : T \to \mathbb{N}$ von σ is defined by

 $\vec{\sigma}(t) =$ number of occurrences of t in σ

Lemma 4.3 (Marking Equation Lemma)

Let N be a net and let $M \xrightarrow{\sigma} M'$ be a firing sequence of N. Then $M' = M + \mathbf{N} \cdot \vec{\sigma}$.

Definition 4.4 (The Marking Equation)

The Marking Equation of a Petri net (N, M_0) is $M = M_0 + \mathbf{N} \cdot X$ with variables M and X.

Proposition 4.5 (A sufficient condition for boundedness)

Let (N, M_0) be a Petri net. If the optimization problem

$$\begin{array}{ll} \mbox{maximize} & \sum\limits_{s \in S} M(s) \\ \mbox{subject to} & M = M_0 + \mathbf{N} \cdot X \end{array}$$

has an optimal solution, then (N, M_0) is bounded.

Proposition 4.6 (A sufficient condition for non-reachability)

Let (N, M_0) be a Petri net and let L be a marking of N. If the equation

$$L = M_0 + \mathbf{N} \cdot X$$
 (with only X as variable)

has no solution, then L is not reachable from M_0 .

Proposition 4.7 (A sufficient condition for deadlock-freedom)

Let (N, M_0) be a 1-bounded Petri net where N = (S, T, F). If the following system of inequations has no solution then (N, M_0) is deadlock-free.

$$\begin{split} M &= M_0 + \mathbf{N} \cdot X \\ \sum_{s \in \cdot t} M(s) < |\bullet t| \text{ for every transition } t. \end{split}$$

Definition 4.8 (S-invariants)

Let N = (S, T, F) be a net. An S-invariant of N is a vector $I : S \to \mathbb{Q}$ such that $I \cdot \mathbf{N} = 0$.

Proposition 4.9 (Fundamental property of S-invariants)

Let (N, M_0) be a Petri net and let I be a S-invariant of N. If $M_0 \xrightarrow{*} M$, then $I \cdot M = I \cdot M_0$.

Proposition 4.10 The S-invariants of a net form a vector space over the real numbers.

Proposition 4.11 I is an S-invariant of N = (S, T, F) iff. $\forall t \in T : \sum_{s \in \bullet} I(s) = \sum_{s \in t^{\bullet}} I(s).$

Definition 4.12 (Semi-positive and positive S-invariants)

Let I be an S-invariant of N = (S, T, F). I is semi-positive if $I \ge 0$ and $I \ne 0$, and positive if I > 0 (that is, if I(s) > 0 for every $s \in S$). The support of an S-invariant is the set $\langle I \rangle = \{s \in S \mid I(s) > 0\}$.

Proposition 4.13 [A sufficient condition for boundedness]

Let (N, M_0) be a Petri net. If N has a positive S-invariant I, then (N, M_0) is bounded. More precisely: (N, M_0) is n-bounded for

$$n = max \left\{ \frac{I \cdot M_0}{I(s)} \mid s \text{ is a place of } N \right\}$$

Proposition 4.14 [A necessary condition for liveness] If (N, M_0) is live, then $I \cdot M_0 > 0$ for every semi-positive S-invariant of N.

Definition 4.15 (The \sim relation)

Let M and L be markings and let I be a S-invariant of a net N. M und L agree on I if $I \cdot M = I \cdot L$. We write $M \sim L$ if M and L agree on all invariants of N.

Proposition 4.16 [A necessary condition for reachability] Let (N, M_0) be a Petri net. $M \sim M_0$ holds for every $M \in [M_0\rangle$.

Theorem 4.17 Let N be a net and let M, L be two markings of N. $M \sim L$ iff the equation $M = L + \mathbf{N} \cdot X$ has a rational solution.

Definition 4.18 (T-invariants)

Let N = (S, T, F) be a net. A vector $J : T \to \mathbb{Q}$ is a T-invariant of N if $\mathbf{N} \cdot J = 0$.

Proposition 4.19 J is a T-invariant of N = (S, T, F) iff $\forall s \in S : \sum_{t \in \bullet} J(t) = \sum_{t \in s^{\bullet}} J(t)$.

Proposition 4.20 [Fundamental property of T-invariants] Let N be a net, let M be a marking of N, and let σ be a sequence of transitions of N enabled at M. The vector $\vec{\sigma}$ is a T-invariant of N iff $M \xrightarrow{\sigma} M$.

Theorem 4.21 [Necessary condition for well-formedness] Every well-formed net has a positive T-invariant.

Definition 4.22 (Siphon)

Let N = (S, T, F) be a net. A set $R \subseteq S$ of places is a *siphon* of N if $\bullet R \subseteq R^{\bullet}$. A siphon R is *proper* if $R \neq \emptyset$.

Proposition 4.23 [Fundamental property of siphons] Let R be a siphon of a net N, and let $M \xrightarrow{\sigma} M'$ be a firing sequence of N. If M(R) = 0, then M'(R) = 0.

Corollary 4.24 [A necessary condition for reachability] If M is reachable in (N, M_0) , then for every siphon R, if $M_0(R) = 0$ then M(R) = 0.

Input: A net N = (S, T, F) and $R \subseteq S$. **Output:** The largest siphon $Q \subseteq R$. **Initialization:** Q := R.

begin

while there are $s \in Q$ and $t \in {}^{\bullet}s$ such that $t \notin Q^{\bullet}$ do $Q \colon = Q \setminus \{s\}$ endwhile end

Proposition 4.25 [A necessary condition for liveness] If (N, M_0) is live, then M_0 marks every proper siphon of N.

Proposition 4.26 If M is a dead marking of N, then the set of places unmarked at M is a siphon of N.

Corollary 4.27 [A sufficient condition for deadlock-freedom] Let (N, M_0) be a Petri net. If every reachable marking marks all siphons of N, then (N, M_0) is deadlock-free.

Definition 4.28 (Trap) Let N = (S, T, F) be a trap. A set $R \subset S$ of places is a *trap* if $R^{\bullet} \subset {}^{\bullet}R$. A trap R is *proper* if $R \neq \emptyset$.

Proposition 4.29 [Fundamental property of traps] Let R be a trap of a net N and let $M \xrightarrow{\sigma} M'$ be a firing sequence of N. If M(R) > 0, then M'(R) > 0.

Corollary 4.30 [A necessary condition for reachability] If M is reachable in (N, M_0) , then for every trap R, if $M_0(R) > 0$ then M(R) > 0.

Proposition 4.31 [A sufficient condition for deadlock-freedom] Let (N, M_0) be a Petri net. If every proper siphon of N contains a trap marked at M_0 , then (N, M_0) is deadlock-free.

5 Petri net classes with efficient decision procedures

Definition 5.1 (S-nets, S-systems) A net N = (S, T, F) is a *S-net* if $|\bullet t| = 1 = |t^{\bullet}|$ for every transition $t \in T$. A Petri net (N, M_0) is a *S-system* if N if N is a S-net.

Proposition 5.2 (Fundamental property of S-systems)

Let (N, M_0) be a S-system with N = (S, T, F). Then $M_0(S) = M(S)$ for every reachable marking M.

Theorem 5.3 [Liveness Theorem] A S-system (N, M_0) where N = (S, T, F) is live iff N is strongly connected and $M_0(S) > 0$.

Theorem 5.4 [Boundedness Theorem] A live S-system (N, M_0) where N = (S, T, F) is b-bounded iff $M_0(S) \leq b$.

Theorem 5.5 [Reachability Theorem] Let (N, M_0) be a live S-system and let M be a marking of N. M is reachable from M_0 iff $M_0(S) = M(S)$.

Proposition 5.6 [S-invariants of S-nets] Let N = (S, T, F) be a connected S-net. A vector $I : S \to \mathbb{Q}$ is a S-invariant of N iff $I = (x, \ldots, x)$ for some $x \in \mathbb{Q}$.

Definition 5.7 (T-nets, T-systems) A net N = (S; T, F) is a *T-net* if $|\bullet s| = 1 = |s^{\bullet}|$ for every place $s \in S$. A system (N, M_0) is a T-system if N is a T-net.

Proposition 5.8 (Fundamental property of T-systems) Let γ be a circuit of a T-systems (N, M_0) and let M be a reachable marking. Then $M(\gamma) = M_0(\gamma)$.

Theorem 5.9 [Liveness Theorem] A T-system (N, M_0) is live iff $M_0(\gamma) > 0$ for every circuit γ of N.

Theorem 5.10 [Boundedness Theorem] A place s of a live T-system (N, M_0) is b-bounded iff it belongs to some circuit γ such that $M_0(\gamma) \leq b$.

Corollary 5.11 Let (N, M_0) be a live T-system

1. A place of N is bounded iff it belongs to some circuit.

2. Let *s* be a bounded place. Then

 $max\{M(s) \mid M_0 \stackrel{*}{\longrightarrow} M\} = min\{M_0(\gamma) \mid \gamma \text{ contains } s\}$

3. (N, M_0) is bounded iff N is strongly connected.

Proposition 5.12 [*T-invariants of T-nets*] Let N = (S, T, F) be a connected *T-net.* A vector $J : T \to \mathbb{Q}$ is a *T-invariant iff* $J = (x \dots x)$ for some $x \in \mathbb{Q}$.

Theorem 5.13 [Reachability Theorem] Let (N, M_0) be a live T-system. A marking M is reachable from M_0 iff $M_0 \sim M$.

Theorem 5.14 Let N be a strongly connected T-net. For every marking M_0 the following statements are equivalent:

(1) (N, M_0) is live.

(2) (N, M_0) is deadlock-free.

(3) (N, M_0) has an infinite firing sequence.

Theorem 5.15 [Genrich's Theorem] Let N be a strongly connected T-net with at least one place and one transition. There is a marking M_0 such that (N, M_0) is live and 1-bounded.

Definition 5.16 (Free-Choice nets, Free-Choice systems) A net N = (S, T, F) is *free-choice* if $s^{\bullet} \times {}^{\bullet}t \subseteq F$ for every $s \in S$ and $t \in T$ such that $(s, t) \in F$. A Petri net (N, M_0) is *free-choice* if N is a free-choice net..

Proposition 5.17 [Alternative definitions of free-choice nets]

(1) A net is free-choice if for every two transitions t_1, t_2 :

 $(t_1 \neq t_2 \land {}^{\bullet}t_1 \cap {}^{\bullet}t_2 \neq \emptyset) \Rightarrow {}^{\bullet}t_1 = {}^{\bullet}t_2$

(2) A net is free-choice if for every two places s_1, s_2 :

 $(s_1 \neq s_2 \land s_1^{\bullet} \cap s_2^{\bullet} \neq \emptyset) \Rightarrow s_1^{\bullet} = s_2^{\bullet}$

Theorem 5.18 [Commoner's Liveness Theorem] A free-choice system (N, M_0) is live iff every siphon of N contains a trap marked at M_0 .

Theorem 5.19 [Complexity] The problem

Given: A free-choice system (N, M_0) Decide: Is (N, M_0) not live?

is NP-complete.

Definition 5.20 (S-component) Let N = (S, T, F) be a net. A subnet N' = (S', T', F') of N is an S-component of N if

1. $T' = {}^{\bullet}S' \cup S'^{\bullet}$ (where ${}^{\bullet}s = \{t \in T \mid (t,s) \in F\}$, and analogously for s^{\bullet}).

2. N' is a strongly connected S-net.

Proposition 5.21 Let (N, M_0) be a Petri net and let N' = (S', T', F') be an S-component of N. Then $M_0(S') = M(S')$ for every marking M reachable from M_0 .

Theorem 5.22 [Hack's Boundedness Theorem] Let (N, M_0) be a live free-choice system. (N, M_0) is bounded iff every place of N belongs to a S-component.

Proposition 5.23 [*Place bounds*] Let (N, M_0) be a live and bounded free-choice system and let s be a place of N. We have

 $max\{M(s) \mid M_0 \xrightarrow{*} M\} = min\{M_0(S') \mid S' \text{ is the set of places of a S-component of } N\}$

Definition 5.24 (Cluster) Let N = (S, T, F) be a net. A *cluster* is an equivalence class of the equivalence relation $((F \cap (S \times T)) \cup (F \cap (S \times T))^{-1})^*$.

Theorem 5.25 [The Rank Theorem] A free-choice system (N, M_0) is live and bounded iff

1. N has a positive S-invariant.

2. N has a positive T-invariant.

- *3.* The rank of the incidence matrix (**N**) is equal to c 1, where c is the number of clusters of N.
- 4. Every siphon of N is marked under M_0 .

Theorem 5.26 Reachability is NP-complete for live and bounded free-choice nets.

Theorem 5.27 [*Reachability Theorem*] Let (N, M_0) be a live, bounded, and cyclic free-choice system. A marking M of N is reachable from M_0 iff $M_0 \sim M$.

Corollary 5.28 The problem

Given: a live, bounded, and cyclic free-choice system (N, M_0) and a marking M Decide: Is M reachable?

can be solved in polynomial time.

Theorem 5.29 A live and bounded free-choice system (N, M_0) is cyclic iff M_0 marks every proper trap of N.

6 Definitions and theorems from the exercises

Definition 6.1 (Cyclic Petri nets) A Petri net (N, M_0) is cyclic if, loosely speaking, it is always possible to return to the initial marking. Formally: $\forall M \in [M_0\rangle : M_0 \in [M]$.

Lemma 6.2 (Exchange Lemma) Let u and v be transitions of a net satisfying ${}^{\bullet}u \cap v^{\bullet} = \emptyset$. If $M \xrightarrow{vu} M'$ then $M \xrightarrow{uv} M'$.

Theorem 6.3 (Strong Connectedness Theorem) Let (N, M_0) be a live and bounded Petri net. N is strongly connected.

Definition 6.4 (Home marking) Let (N, M_0) be a Petri net. A marking M of the net N is a home marking of (N, M_0) if it is reachable from every marking of $[M_0)$.

We say that (N, M_0) has a home marking if some reachable marking is a home marking.

Definition 6.5 (Nets with transfer arcs) A net with transfer arcs N = (S, T, F, R) consists of two disjoint sets of places and transitions, a set $F \subseteq (S \times T) \cup (T \times S)$ of arcs, and a set $R \subseteq (S \times T) \cup (T \times S)$, disjoint from F, of transfer arcs.

A transition t is enabled at a marking M of N if M(s) > 0 for every place s such that $(s,t) \in F \cup R$. If t is enabled then it can occur leading to the marking M' obtained after the following operations:

1. Let k be the sum of the tokens in all places s such that $(s,t) \in R$, i.e., $k := \sum_{\{s \in S \mid (s,t) \in R\}} M(s)$.

2. Remove one token from every place s such that $(s,t) \in F$.

3. Remove all tokens from every place s such that $(s, t) \in R$ *.*

4. Add one token to every place s such that $(t, s) \in F$.

5. Add k tokens to every place s such that $(t, s) \in R$.

Definition 6.6 (Zero-reachability problem) For a Petri net (N, M_0) , is there a marking $M \in [M_0)$ with M(s) = 0 for all $s \in S$?

Lemma 6.7 (Reproduction lemma) Let (N, M_0) be a bounded system and let $M_0 \xrightarrow{\sigma}$ be an infinite occurence sequence.

1. There exists sequences σ_1 , σ_2 , σ_3 such that $\sigma = \sigma_1 \sigma_2 \sigma_3$, σ_2 is not the empty sequence and

$$M_0 \xrightarrow{\sigma_1} M \xrightarrow{\sigma_2} M \xrightarrow{\sigma_3}$$

for some marking M.

2. There exists a semi-positive T-invariant J such that $\langle J \rangle \subseteq \mathcal{A}(\sigma)$, where $\mathcal{A}(\sigma)$ is the set of transitions appearing in σ .

Proposition 6.8 Let N be a net and R a set of places of N. R is a trap of N iff for all markings M of N, if M(R) > 0, then M'(R) > 0 for all $M' \in [M)$.

Corollary 6.9 Let (N, M_0) be a live T-system, M a marking of N and $X : T \to \mathbb{N}$ a vector such that $M = M_0 + \mathbf{N} \cdot X$. There is an occurrence sequence $M_0 \xrightarrow{\sigma} M$ such that $\vec{\sigma} = X$.