!'_ A brief introduction to Logic

(slides from http://www.decision-procedures.org/)

i A Brief Introduction to Logic - Outline

= Propositional Logic :Syntax

= Propositional Logic :Semantics
n Satisfiability and validity

= Normal forms

i Propositional logic: Syntax

= The symbols of the language:
= Propositional symbols (Prop): A, B, C,...
= Connectives:

= A and

Y, or

. — not

= —> Implies

= <> equivalentto

= O xor (different than)

« 1, T False, True
= Parenthesis:(,).

i Formulas

s Grammar of well-formed propositional formulas

= Formula := prop | (=Formula) | (Formula o Formula).

= ... Where prop € Prop and o is one of the binary relations

i Assignments

= Definition: A truth-values assignment, o, IS an
element of 2°™P (i.e., o € 2ProP),

= In other words, « Is a subset of the variables that are
assigned true.

= Equivalently, we can see « as a mapping from

variables to truth values:
o . Prop— {0,1}
= Example: a: {A—0,B—1,...}

i Satisfaction relation (F): intuition

= An assignment can either satisfy or not satisfy a
given formula.

= o F @ means

= O satisfies ¢ or
= ¢ holdsat o or
= O Isamodel of

= We will first see an example.
= Then we will define these notions formally.

i Example

s Lletop=(AV (B — ()
s leta={A—0,B—0,C—> 1}

m Q: Does « satisfy ¢?
= (insymbols: does it hold that o F ¢ ?)

s A:(0V(0—>1)=(0v1=1
= Hence, a F ¢.

= Let us now formalize an evaluation process.

i The satisfaction relation (F): formalities

= Fisarelation: E C (2P x Formula)

s Examples:
« ({a},aV b) //the assignment o = {a} satisfiesa Vv b
= ({a,b},anb)

= Alternatively: E C ({0,1}PP x Formula)

= Examples:
= (01,aV b) //the assignment o« ={a+> 0, b+ 1} satisfies aVv b
= (11,aADb)

i The satisfaction relation (F): formalities

= F IS defined recursively:
= akFpifa(p)=true
s oF—@ifak .
s oFEQAQ, IfaF e and aF ¢,
s 0FQ, v, ifakFoe 0rakF o,

oc|=(p1—>(p2 If o F @, iImplies a F @,

oc|=(p1<—>(p2ifocl=(p1iffocl=(p2

i From definition to an evaluation algorithm

s [ruth Evaluation Problem
= Given ¢ € Formula and o € 24P(@), does a F ¢ ?

Eval (¢, a){
If ¢ = A, return o(A).
If ¢ = (—p,) return —Eval (p,, o))

If 0 = (@1 0 9,)
return Eval (¢, a) o Eval (p,, a)

}

= Eval uses polynomial time and space.

10

i Set of assignments

= Intuition: a formula specifies a set of truth
assignments.

= Function models: Formula > 227"
(a formula — set of satisfying assignments)

s Recursive definition:

models(A) = {a |a(A) = 1}, A € Prop

models(—¢,) = 2P — models(op,)

models(p;A@,) = models(¢p,) N models(o,)
models(p,ve,) = models(¢,) W models(o,)
models(p;—®,) = (2P°P — models(g,)) W models(op,)

11

i Theorem

s Let ¢ € Formula and a € 2P, then the following
statements are equivalent:
l.aFo

2. o € models(o)

12

i Semantic Classification of formulas

= A formula o is called valid if models(¢) = 2Pr°P.
(also called a tautology).

= A formula o is called satisfiable if models(¢) # 0.

= A formula ¢ is called unsatisfiable if models(g) = 0.
(also called a contradiction).

satisfiable
unsatisfiable

valid

i Validity, satisfiability... in truth tables

p | | P—@—q) [PA—P)| PV—Q
0 |0 1 0 1
0 |1 1 0 0
1 |0 1 0 1
1 |1 1 0 1

14

i ook what we can do now...

s We can write:

. Eo

. Ko

. E g

. E—g

when ¢ Is valid

when ¢ is not valid

when ¢ Is satisfiable

when ¢ Is unsatisfiable

15

i The decision problem of formulas

= The decision problem:

= An algorithm that always terminates with a correct
answer to this problem is called a decision
procedure for propositional logic.

16

i Two classes of algorithms for validity

s Q: Is ¢ satisfiable (/= 1s valid) ?

s Complexity: NP-Complete (the first-ever! — Cook’s
theorem)

= Two classes of algorithms for finding out:
1. Enumeration of possible solutions (Truth tables etc).
2. Deduction

= More generally (beyond propositional logic):
= Enumeration is possible only in some logics.

= Deduction cannot necessarily be fully automated.
17

i The satisfiability problem: enumeration

= Given a formula o, Is ¢ satisfiable?

Boolean SAT (@) {
B:=false

for all o € 22P(e)
B = B v Eval (¢,a)
end

return B

= [here must be a better way to do that in practice.

18

i A Brief Introduction to Logic - Outline

= Propositional Logic :Syntax

= Propositional Logic :Semantics
n Satisfiability and validity

= Normal forms

19

i Definitions...

= Definition: A literal is either an atom or a negation of
an atom.

= Letdp=—(AV —-B). Then:
= Atoms: AP(¢) = {A,B}
= Literals: lit(¢) = {A, =B}

= Equivalent formulas can have different literals
= 0=—(AV-B)=-AAB
= Now lit(¢) = {—A, B}

20

i Definitions...

= Definition: a term Is a conjunction of literals
= Example: (AA =B A C)

= Definition: a clause Is a disjunction of literals
= Example: (AV =B Vv C)

21

i Negation Normal Form (NNF)

= Definition: A formula is said to be in Negation
Normal Form (NNF) if it only contains —, A and Vv

connectives and only atoms can be negated.

= Examples:
s ¢, = (A vV -B) IS not in NNF
= O,=-AANB IS In NNF

22

i Converting to NNF

= Every formula can be converted to NNF in linear
time:
= Eliminate all connectives other than A, Vv, —

= Use De Morgan and double-negation rules to push
negations to the right

= Example: ¢ = (A — —B)
s Eliminate ‘—": ¢ = ~(-A V —=B)
= Push negation using De Morgan: ¢ = (——A A =—B)
= Use Double negation rule: ¢ = (A A B)

23

i Disjunctive Normal Form (DNF)

= Definition: A formula is said to be in Disjunctive
Normal Form (DNF) if it Is a disjunction of terms.

= In other words, it is a formula of the form
\/ (/\l)

where [; ;is the j- th Ilteral In the ¢-th term.

s Examples

= DNF is a special case of NNF

24

i Converting to DNF

= Every formula can be converted to DNF In
exponential time and space:
= Convert to NNF
= Distribute disjunctions following the rule:
EAABVC)< ((AAB)V(AAQ)
s Example:
s 0=(AVB)A(—-CVD)=
(AVB)A(-C) V((AVB)AD)=
(AN-C)V(BA-C)V(AAD)V(BAD)

25

i Conjunctive Normal Form (CNF)

= Definition: A formula is said to be in Conjunctive

Normal Form (CNF) if it is a conjunction of clauses.

= In other words, it is a formula of the form
/\ (\/l)

where [; ;is the j- th Ilteral In the ¢-th term.

s Examples
s 0=(AV-BVC)A (wAVD)A (B) IS in CNF

s CNF Is a special case of NNF

26

Converting to CNF

= Every formula can be converted to CNF:
= In exponential time and space with the same set of atoms

= In linear time and space if new variables are added.

= In this case the original and converted formulas are “equi-
satisfiable™.

= This technique is called Tseitin’s encoding.

27

i Converting to CNF: the exponential way

CNF(¢) 1

case

¢ Is a literal: return ¢

b ISy Ay, return CNF(y,) A CNF(w,)

b ISy, V y,: return Dist(CNF(y,),CNF(y,))

Y Y

Dist(y,y;) {
case

W1 IS §gq A §go0 return Dist(qq,y,) A DIst(yq,,y5)

Yo IS §pg A oo return Dist(yq,d,1) A DIst(yy,0,,)
else: return y; V vy,

28

i Converting to CNF: the exponential way

Consider the formula

O =X AY)V (X AY))
CNF(d)=

(X; V X,) A

(X1 VYA

(Y1 V X5) A

Y1V Yo)

Now consider: ¢, = (X; AY) V (X, AY,) V-V (X, AY,)
Q: How many clauses CNF(¢) returns ?
A: 2"

29

i Converting to CNF: Tseitin’s encoding

= Consider the formula ¢ = (A — (B A C))
= The parse tree: e
d;

OEROL

= Associate a new auxiliary variable with each gate.

s Add constraints that define these new variables.
= Finally, enforce the root node.

30

i Converting to CNF: Tseitin’s encoding

= Need to satisfy:
(a; < (A —a,)) A
(3, <> (B A C)) A)

(@) Q ° a,

= Each such constraint has a CNF representation with 3
or 4 clauses.

31

i Converting to CNF: Tseitin’s encoding

= Need to satisfy:
(a; < (A—a)) A
(a, <> (BAC)) A
(a,)

= Second: (—a, VB) A (—a, VC)A(a, VBV -C)

32

i Converting to CNF: Tseitin’s encoding

m Let’s go back to
O = (X AYD) VKo AY) Vs V(X AYy)
s With Tseitin’s encoding we need:
= N auxiliary variables a,,...,a,,.
= Each adds 3 constraints.
= Topclause: (a; vV --- vV a,)

s Hence, we have
s 3n + 1 clauses, instead of 2".
= 3n variables rather than 2n.

33

i What now?

= Time to solve the decision problem for propositional
logic.

= The only algorithm we saw so far was building truth tables.

34

i Two classes of algorithms for validity

= Q:ls¢valid?
= Equivalently: is —¢ satisfiable?
= Two classes of algorithm for finding out:

1. Enumeration of possible solutions (Truth tables etc).
2. Deduction

= In general (beyond propositional logic):
= Enumeration is possible only in some theories.
= Deduction typically cannot be fully automated.

35

i The satisfiability Problem: enumeration

= Given a formula o, Is ¢ satisfiable?

Boolean SAT (@) {
B:=false

for all o € 22P(e)
B = B v Eval (¢,a)
end

return B

}
= NP-Complete (the first-ever! — Cook’s theorem)

36

i A Brief Introduction to Logic - Outline

= Propositional Logic :Syntax

= Propositional Logic :Semantics
n Satisfiability and validity

= Normal forms

37

