A brief introduction to Logic

(slides from http://www.decision-procedures.org/)

A Brief Introduction to Logic - Outline

- Propositional Logic :Syntax
- Propositional Logic :Semantics
- Satisfiability and validity
- Normal forms

Propositional logic: Syntax

- The symbols of the language:
- Propositional symbols (Prop): A, B, C,...
- Connectives:
- $\wedge ~ a n d ~$
- \vee or
- \neg not
- $\rightarrow \quad$ implies
- $\leftrightarrow \quad$ equivalent to
- $\oplus \quad$ xor (different than)
- \perp, \top False, True
- Parenthesis:(,).

Formulas

- Grammar of well-formed propositional formulas
- Formula $:=\operatorname{prop} \mid(\neg$ Formula) \mid (Formula o Formula).
- ... where prop $\in \operatorname{Prop}$ and o is one of the binary relations

Assignments

- Definition: A truth-values assignment, α, is an element of $2^{\text {Prop }}$ (i.e., $\alpha \in 2^{\text {Prop }}$).
- In other words, α is a subset of the variables that are assigned true.
- Equivalently, we can see α as a mapping from variables to truth values:
$\alpha:$ Prop $\mapsto\{0,1\}$
- Example: $\alpha:\{\mathrm{A} \mapsto 0, \mathrm{~B} \mapsto 1, \ldots\}$

Satisfaction relation (\vDash) : intuition

- An assignment can either satisfy or not satisfy a given formula.
- $\alpha \vDash \varphi$ means
- α satisfies φ or
- φ holds at α or
- α is a model of φ
- We will first see an example.
- Then we will define these notions formally.

Example

- Let $\phi=(\mathrm{A} \vee(\mathrm{B} \rightarrow \mathrm{C}))$
- Let $\alpha=\{\mathrm{A} \mapsto 0, \mathrm{~B} \mapsto 0, \mathrm{C} \mapsto 1\}$
- Q: Does α satisfy ϕ ?
- (in symbols: does it hold that $\alpha \vDash \phi$?)
- $\mathrm{A}:(0 \vee(0 \rightarrow 1))=(0 \vee 1)=1$
- Hence, $\alpha \vDash \phi$.
- Let us now formalize an evaluation process.

The satisfaction relation (\vDash) : formalities

- \vDash is a relation: $\vDash \subseteq\left(2^{\text {Prop }} \times\right.$ Formula $)$
- Examples:
- ($\{\mathrm{a}\}, \mathrm{a} \vee \mathrm{b}) / /$ the assignment $\alpha=\{\mathrm{a}\}$ satisfies $\mathrm{a} \vee \mathrm{b}$
- $(\{a, b\}, a \wedge b)$
- Alternatively: $\vDash \subseteq\left(\{0,1\}^{\text {Prop }} \times\right.$ Formula $)$
- Examples:
- ($01, \mathrm{a} \vee \mathrm{b}$) // the assignment $\alpha=\{\mathrm{a} \mapsto 0, \mathrm{~b} \mapsto 1\}$ satisfies $\mathrm{a} \vee \mathrm{b}$
- (11, a $\wedge \mathrm{b})$

The satisfaction relation (\vDash) : formalities

- \vDash is defined recursively:
- $\alpha \vDash$ p if $\alpha(p)=$ true
- $\alpha \vDash \neg \varphi$ if $\alpha \not \vDash \varphi$.
- $\alpha \vDash \varphi_{1} \wedge \varphi_{2}$ if $\alpha \vDash \varphi_{1}$ and $\alpha \vDash \varphi_{2}$
- $\alpha \vDash \varphi_{1} \vee \varphi_{2}$ if $\alpha \vDash \varphi_{1}$ or $\alpha \vDash \varphi_{2}$
- $\alpha \vDash \varphi_{1} \rightarrow \varphi_{2}$ if $\alpha \vDash \varphi_{1}$ implies $\alpha \vDash \varphi_{2}$
- $\alpha \vDash \varphi_{1} \leftrightarrow \varphi_{2}$ if $\alpha \vDash \varphi_{1}$ iff $\alpha \vDash \varphi_{2}$

From definition to an evaluation algorithm

- Truth Evaluation Problem
- Given $\varphi \in$ Formula and $\alpha \in 2^{\mathrm{AP}(\varphi)}$, does $\alpha \vDash \varphi$?
$\operatorname{Eval}(\varphi, \quad \alpha)\{$

$$
\begin{aligned}
& \text { If } \varphi \equiv A, \text { return } \alpha(A) . \\
& \text { If } \left.\varphi \equiv\left(\neg \varphi_{1}\right) \text { return } \neg \operatorname{Eval}\left(\varphi_{1}, \alpha\right)\right) \\
& \text { If } \varphi \equiv\left(\varphi_{1} \circ \varphi_{2}\right) \\
& \quad \text { return Eval }\left(\varphi_{1}, \alpha\right) \circ \operatorname{Eval}\left(\varphi_{2}, \alpha\right) \\
& \}
\end{aligned}
$$

- Eval uses polynomial time and space.

Set of assignments

- Intuition: a formula specifies a set of truth assignments.
- Function models: Formula $\mapsto 2^{2 \text { Prop }}$
(a formula \mapsto set of satisfying assignments)
- Recursive definition:
- models $(\mathrm{A})=\{\alpha \mid \alpha(\mathrm{A})=1\}, \mathrm{A} \in \operatorname{Prop}$
- $\operatorname{models}\left(\neg \varphi_{1}\right)=2^{\text {Prop }}-\operatorname{models}\left(\varphi_{1}\right)$
- $\operatorname{models}\left(\varphi_{1} \wedge \varphi_{2}\right)=\operatorname{models}\left(\varphi_{1}\right) \cap \operatorname{models}\left(\varphi_{2}\right)$
- $\operatorname{models}\left(\varphi_{1} \vee \varphi_{2}\right)=\operatorname{models}\left(\varphi_{1}\right) \cup \operatorname{models}\left(\varphi_{2}\right)$
- $\operatorname{models}\left(\varphi_{1} \rightarrow \varphi_{2}\right)=\left(2^{\text {Prop }}-\operatorname{models}\left(\varphi_{1}\right)\right) \cup \operatorname{models}\left(\varphi_{2}\right)$

Theorem

- Let $\varphi \in$ Formula and $\alpha \in 2^{\text {Prop }}$, then the following statements are equivalent:

1. $\alpha \vDash \varphi$
2. $\alpha \in \operatorname{models}(\varphi)$

Semantic Classification of formulas

- A formula φ is called valid if $\operatorname{models}(\varphi)=2^{\text {Prop }}$. (also called a tautology).
- A formula φ is called satisfiable if $\operatorname{models}(\varphi) \neq \emptyset$.
- A formula φ is called unsatisfiable if $\operatorname{models}(\varphi)=\emptyset$. (also called a contradiction).

Validity, satisfiability... in truth tables

p	q	$(\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{q}))$	$(\mathrm{p} \wedge \neg \mathrm{p})$	$\mathrm{p} \vee \neg \mathrm{q}$
0	0	1	0	1
0	1	1	0	0
1	0	1	0	1
1	1	1	0	1

Look what we can do now...

- We can write:
- $\vDash \phi$
- $\not \models \phi$
- $\not \models \neg \phi$
- $\vDash \neg \phi$
when ϕ is valid
when ϕ is not valid
when ϕ is satisfiable
when ϕ is unsatisfiable

The decision problem of formulas

- The decision problem:

Given a propositional formula ϕ, is ϕ satisfiable?

- An algorithm that always terminates with a correct answer to this problem is called a decision procedure for propositional logic.

Two classes of algorithms for validity

- Q : Is φ satisfiable ($\neg \varphi$ is valid) ?
- Complexity: NP-Complete (the first-ever! - Cook's theorem)
- Two classes of algorithms for finding out:

1. Enumeration of possible solutions (Truth tables etc).
2. Deduction

- More generally (beyond propositional logic):
- Enumeration is possible only in some logics.
- Deduction cannot necessarily be fully automated.

The satisfiability problem: enumeration

- Given a formula φ, is φ satisfiable?

$$
\begin{aligned}
& \text { Boolean } \operatorname{SAT}(\varphi)\{ \\
& \text { B:=false } \\
& \text { for all } \alpha \in \mathbf{2}^{\operatorname{AP}(\varphi)} \\
& \text { B }=\mathrm{B} \vee \operatorname{Eval}(\varphi, \alpha) \\
& \text { end } \\
& \text { return } \mathrm{B}
\end{aligned}
$$

$$
\}
$$

- There must be a better way to do that in practice.

A Brief Introduction to Logic - Outline

- Propositional Logic :Syntax
- Propositional Logic :Semantics
- Satisfiability and validity
- Normal forms

Definitions...

- Definition: A literal is either an atom or a negation of an atom.
- Let $\phi=\neg(\mathrm{A} \vee \neg \mathrm{B})$. Then:
- Atoms: $\mathrm{AP}(\phi)=\{\mathrm{A}, \mathrm{B}\}$
- Literals: $\operatorname{lit}(\phi)=\{\mathrm{A}, \neg \mathrm{B}\}$
- Equivalent formulas can have different literals
- $\phi=\neg(\mathrm{A} \vee \neg \mathrm{B})=\neg \mathrm{A} \wedge \mathrm{B}$
- $\operatorname{Now} \operatorname{lit}(\phi)=\{\neg \mathrm{A}, \mathrm{B}\}$

Definitions...

- Definition: a term is a conjunction of literals
- Example: $(\mathrm{A} \wedge \neg \mathrm{B} \wedge \mathrm{C})$
- Definition: a clause is a disjunction of literals
- Example: $(\mathrm{A} \vee \neg \mathrm{B} \vee \mathrm{C}$)

Negation Normal Form (NNF)

- Definition: A formula is said to be in Negation Normal Form (NNF) if it only contains \neg, \wedge and \vee connectives and only atoms can be negated.
- Examples:
- $\phi_{1}=\neg(\mathrm{A} \vee \neg \mathrm{B}) \quad$ is not in NNF
- $\phi_{2}=\neg \mathrm{A} \wedge \mathrm{B} \quad$ is in NNF

Converting to NNF

- Every formula can be converted to NNF in linear time:
- Eliminate all connectives other than \wedge, \vee, \neg
- Use De Morgan and double-negation rules to push negations to the right
- Example: $\phi=\neg(\mathrm{A} \rightarrow \neg \mathrm{B})$
- Eliminate ' \rightarrow ': $\phi=\neg(\neg \mathrm{A} \vee \neg \mathrm{B})$
- Push negation using De Morgan: $\phi=(\neg \neg \mathrm{A} \wedge \neg \neg \mathrm{B})$
- Use Double negation rule: $\phi=(\mathrm{A} \wedge \mathrm{B})$

Disjunctive Normal Form (DNF)

- Definition: A formula is said to be in Disjunctive Normal Form (DNF) if it is a disjunction of terms.
- In other words, it is a formula of the form

$$
\bigvee_{i}\left(\bigwedge_{j} l_{i, j}\right)
$$

where $l_{i, j}$ is the j-th literal in the i-th term.

- Examples
- $\phi=(\mathrm{A} \wedge \neg \mathrm{B} \wedge \mathrm{C}) \vee(\neg \mathrm{A} \wedge \mathrm{D}) \vee(\mathrm{B}) \quad$ is in DNF
- DNF is a special case of NNF

Converting to DNF

- Every formula can be converted to DNF in exponential time and space:
- Convert to NNF
- Distribute disjunctions following the rule: $\vDash \mathrm{A} \wedge(\mathrm{B} \vee \mathrm{C}) \leftrightarrow((\mathrm{A} \wedge \mathrm{B}) \vee(\mathrm{A} \wedge \mathrm{C}))$
- Example:
- $\phi=(\mathrm{A} \vee \mathrm{B}) \wedge(\neg \mathrm{C} \vee \mathrm{D})=$ $((\mathrm{A} \vee \mathrm{B}) \wedge(\neg \mathrm{C})) \vee((\mathrm{A} \vee \mathrm{B}) \wedge \mathrm{D})=$ $(\mathrm{A} \wedge \neg \mathrm{C}) \vee(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\mathrm{A} \wedge \mathrm{D}) \vee(\mathrm{B} \wedge \mathrm{D})$

Conjunctive Normal Form (CNF)

- Definition: A formula is said to be in Conjunctive Normal Form (CNF) if it is a conjunction of clauses.
- In other words, it is a formula of the form

$$
\bigwedge_{i}\left(\bigvee_{j} l_{i, j}\right)
$$

where $l_{i, j}$ is the j-th literal in the i-th term.

- Examples
- $\phi=(\mathrm{A} \vee \neg \mathrm{B} \vee \mathrm{C}) \wedge(\neg \mathrm{A} \vee \mathrm{D}) \wedge(\mathrm{B}) \quad$ is in CNF
- CNF is a special case of NNF

Converting to CNF

- Every formula can be converted to CNF:
- in exponential time and space with the same set of atoms
- in linear time and space if new variables are added.
- In this case the original and converted formulas are "equisatisfiable".
- This technique is called Tseitin's encoding.

Converting to CNF: the exponential way

CNF (ϕ) \{

case
ϕ is a literal: return ϕ
ϕ is $\psi_{1} \wedge \psi_{2}$: return $\operatorname{CNF}\left(\psi_{1}\right) \wedge \operatorname{CNF}\left(\psi_{2}\right)$ ϕ is $\psi_{1} \vee \psi_{2}$: return $\operatorname{Dist}\left(\operatorname{CNF}\left(\psi_{1}\right), \operatorname{CNF}\left(\psi_{2}\right)\right)$
$\}$
$\operatorname{Dist}\left(\psi_{1}, \psi_{2}\right)\{$
case
ψ_{1} is $\phi_{11} \wedge \phi_{12}:$ return $\operatorname{Dist}\left(\phi_{11}, \psi_{2}\right) \wedge \operatorname{Dist}\left(\psi_{12}, \psi_{2}\right)$
ψ_{2} is $\phi_{21} \wedge \phi_{22}:$ return $\operatorname{Dist}\left(\psi_{1}, \phi_{21}\right) \wedge \operatorname{Dist}\left(\psi_{1}, \phi_{22}\right)$
else: return $\psi_{1} \vee \psi_{2}$

Converting to CNF: the exponential way

- Consider the formula
$\phi=\left(\mathrm{x}_{1} \wedge \mathrm{y}_{1}\right) \vee\left(\mathrm{x}_{2} \wedge \mathrm{y}_{2}\right)$
- $\operatorname{CNF}(\phi)=$
$\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge$
$\left(\mathrm{x}_{1} \vee \mathrm{y}_{2}\right) \wedge$
$\left(y_{1} \vee x_{2}\right) \wedge$
$\left(y_{1} \vee y_{2}\right)$
- Now consider: $\phi_{\mathrm{n}}=\left(\mathrm{x}_{1} \wedge \mathrm{y}_{1}\right) \vee\left(\mathrm{x}_{2} \wedge \mathrm{y}_{2}\right) \vee \cdots \vee\left(\mathrm{x}_{\mathrm{n}} \wedge \mathrm{y}_{\mathrm{n}}\right)$
- Q: How many clauses $\operatorname{CNF}(\phi)$ returns ?
- $A: 2^{n}$

Converting to CNF: Tseitin's encoding

- Consider the formula $\phi=(\mathrm{A} \rightarrow(\mathrm{B} \wedge \mathrm{C}))$
- The parse tree:

- Associate a new auxiliary variable with each gate.
- Add constraints that define these new variables.
- Finally, enforce the root node.

Converting to CNF: Tseitin's encoding

- Need to satisfy:
$\left(\mathrm{a}_{1} \leftrightarrow\left(\mathrm{~A} \rightarrow \mathrm{a}_{2}\right)\right) \wedge$ $\left(\mathrm{a}_{2} \leftrightarrow(\mathrm{~B} \wedge \mathrm{C})\right) \wedge$
(a_{1})

- Each such constraint has a CNF representation with 3 or 4 clauses.

Converting to CNF: Tseitin's encoding

- Need to satisfy:

$$
\begin{aligned}
& \left(\mathrm{a}_{1} \leftrightarrow\left(\mathrm{~A} \rightarrow \mathrm{a}_{2}\right)\right) \wedge \\
& \left(\mathrm{a}_{2} \leftrightarrow(\mathrm{~B} \wedge \mathrm{C})\right) \wedge \\
& \left(\mathrm{a}_{1}\right)
\end{aligned}
$$

- First: $\left(\mathrm{a}_{1} \vee \mathrm{~A}\right) \wedge\left(\mathrm{a}_{1} \vee \neg \mathrm{a}_{2}\right) \wedge\left(\neg \mathrm{a}_{1} \vee \neg \mathrm{~A} \vee \mathrm{a}_{2}\right)$
- Second: $\left(\neg \mathrm{a}_{2} \vee \mathrm{~B}\right) \wedge\left(\neg \mathrm{a}_{2} \vee \mathrm{C}\right) \wedge\left(\mathrm{a}_{2} \vee \neg \mathrm{~B} \vee \neg \mathrm{C}\right)$

Converting to CNF: Tseitin's encoding

- Let's go back to
$\phi_{\mathrm{n}}=\left(\mathrm{x}_{1} \wedge \mathrm{y}_{1}\right) \vee\left(\mathrm{x}_{2} \wedge \mathrm{y}_{2}\right) \vee \cdots \vee\left(\mathrm{x}_{\mathrm{n}} \wedge \mathrm{y}_{\mathrm{n}}\right)$
- With Tseitin's encoding we need:
- n auxiliary variables $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$.
- Each adds 3 constraints.
- Top clause: $\left(a_{1} \vee \cdots \vee a_{n}\right)$
- Hence, we have
- $3 n+1$ clauses, instead of 2^{n}.
- $3 n$ variables rather than $2 n$.

What now?

- Time to solve the decision problem for propositional logic.
- The only algorithm we saw so far was building truth tables.

Two classes of algorithms for validity

- Q : Is φ valid ?
- Equivalently: is $\neg \varphi$ satisfiable?
- Two classes of algorithm for finding out:

1. Enumeration of possible solutions (Truth tables etc).
2. Deduction

- In general (beyond propositional logic):
- Enumeration is possible only in some theories.
- Deduction typically cannot be fully automated.

The satisfiability Problem: enumeration

- Given a formula φ, is φ satisfiable?

Boolean $\operatorname{SAT}(\varphi)$ \{
B:=false for all $\alpha \in 2^{\operatorname{AP}(\varphi)}$
$B=B \vee \operatorname{Eval}(\varphi, \alpha)$
end
return B
\}

- NP-Complete (the first-ever! - Cook's theorem)

A Brief Introduction to Logic - Outline

- Propositional Logic :Syntax
- Propositional Logic :Semantics
- Satisfiability and validity
- Normal forms

