

(slides from http://www.decision-procedures.org/)

A Brief Introduction to Logic - Outline

- Propositional Logic :Syntax
- Propositional Logic :Semantics
- Satisfiability and validity
- Normal forms

Propositional logic: Syntax

- The symbols of the language:
 - Propositional symbols (Prop): A, B, C,...
 - Connectives:
 - \land and
 - V or
 - not
 - $\bullet \rightarrow$ implies
 - \leftrightarrow equivalent to
 - \oplus xor (different than)
 - \bot , \top False, True
 - Parenthesis:(,).

Grammar of well-formed propositional formulas

■ Formula := prop | (¬Formula) | (Formula o Formula).

• ... where $prop \in Prop$ and o is one of the binary relations

Assignments

- Definition: A truth-values assignment, α , is an element of 2^{Prop} (i.e., $\alpha \in 2^{\text{Prop}}$).
- In other words, α is a subset of the variables that are assigned true.
- Equivalently, we can see α as a mapping from variables to truth values:
 - α : Prop \mapsto {0,1}
 - Example: α : {A \mapsto 0, B \mapsto 1,...}

Satisfaction relation (⊨): intuition

- An assignment can either satisfy or not satisfy a given formula.
- $\alpha \vDash \varphi$ means
 - α satisfies ϕ or
 - φ holds at α or
 - α is a model of φ
- We will first see an example.
- Then we will define these notions formally.

Example

- Let $\phi = (A \lor (B \rightarrow C))$
- Let $\alpha = \{ A \mapsto 0, B \mapsto 0, C \mapsto 1 \}$
- Q: Does α satisfy ϕ ?
 - (in symbols: does it hold that $\alpha \vDash \phi$?)

• A:
$$(0 \lor (0 \to 1)) = (0 \lor 1) = 1$$

- Hence, $\alpha \vDash \phi$.
- Let us now formalize an evaluation process.

The satisfaction relation (⊨): formalities

- \models is a relation: $\models \subseteq (2^{\text{Prop}} \times \text{Formula})$
 - Examples:
 - ({a}, a \lor b) // the assignment $\alpha = \{a\}$ satisfies a \lor b
 - ({a,b}, a ∧ b)
- Alternatively: $\models \subseteq (\{0,1\}^{Prop} \times Formula)$
 - Examples:
 - (01, $a \lor b$) // the assignment $\alpha = \{a \mapsto 0, b \mapsto 1\}$ satisfies $a \lor b$
 - (11, a ∧ b)

The satisfaction relation (⊨): formalities

- \models is defined recursively:
 - $\alpha \models p \text{ if } \alpha (p) = true$
 - $\alpha \vDash \neg \varphi$ if $\alpha \nvDash \varphi$.
 - $\alpha \vDash \phi_1 \land \phi_2$ if $\alpha \vDash \phi_1$ and $\alpha \vDash \phi_2$
 - $\alpha \vDash \phi_1 \lor \phi_2$ if $\alpha \vDash \phi_1$ or $\alpha \vDash \phi_2$
 - $\alpha \vDash \phi_1 \rightarrow \phi_2$ if $\alpha \vDash \phi_1$ implies $\alpha \vDash \phi_2$
 - $\alpha \vDash \varphi_1 \leftrightarrow \varphi_2$ if $\alpha \vDash \varphi_1$ iff $\alpha \vDash \varphi_2$

From definition to an evaluation algorithm

Truth Evaluation Problem
 Given φ ∈ Formula and α ∈ 2^{AP(φ)}, does α ⊨ φ ?

```
Eval(\varphi, \alpha) {

If \varphi \equiv A, return \alpha(A).

If \varphi \equiv (\neg \varphi_1) return \neg Eval(\varphi_1, \alpha))

If \varphi \equiv (\varphi_1 \circ \varphi_2)

return Eval(\varphi_1, \alpha) \circ Eval(\varphi_2, \alpha)

}
```

• Eval uses polynomial time and space.

Set of assignments

- Intuition: a formula specifies a set of truth assignments.
- Function models: Formula $\mapsto 2^{2^{\text{Prop}}}$ (a formula \mapsto set of satisfying assignments)
- Recursive definition:
 - models(A) = { $\alpha | \alpha(A) = 1$ }, A \in Prop
 - $models(\neg \phi_1) = 2^{Prop} models(\phi_1)$
 - models($\phi_1 \land \phi_2$) = models(ϕ_1) \cap models(ϕ_2)
 - $models(\phi_1 \lor \phi_2) = models(\phi_1) \cup models(\phi_2)$
 - $models(\phi_1 \rightarrow \phi_2) = (2^{Prop} models(\phi_1)) \cup models(\phi_2)$

• Let $\varphi \in$ Formula and $\alpha \in 2^{Prop}$, then the following statements are equivalent:

- 1. $\alpha \models \varphi$
- 2. $\alpha \in \text{models}(\varphi)$

Semantic Classification of formulas

- A formula φ is called valid if models(φ) = 2^{Prop}.
 (also called a tautology).
- A formula φ is called satisfiable if models(φ) $\neq \emptyset$.
- A formula φ is called unsatisfiable if models(φ) = Ø.
 (also called a contradiction).

Validity, satisfiability... in truth tables

p	q	$(p \rightarrow (q \rightarrow q))$	$(p \land \neg p)$	$p \lor \neg q$
0	0	1	0	1
0	1	1	0	0
1	0	1	0	1
1	1	1	0	1

Look what we can do now...

- We can write:
 - $\models \phi$ when ϕ is valid
 - $\nvDash \phi$ when ϕ is not valid
 - $\nvDash \neg \phi$ when ϕ is satisfiable
 - $\models \neg \phi$ when ϕ is unsatisfiable

The decision problem of formulas

• The decision problem:

Given a propositional formula ϕ , is ϕ satisfiable ?

 An algorithm that always terminates with a correct answer to this problem is called a decision procedure for propositional logic.

Two classes of algorithms for validity

- Q: Is φ satisfiable (/ $\neg \varphi$ is valid) ?
- Complexity: NP-Complete (the first-ever! Cook's theorem)
- Two classes of algorithms for finding out:
 - 1. Enumeration of possible solutions (Truth tables etc).
 - 2. Deduction
- More generally (beyond propositional logic):
 - Enumeration is possible only in some logics.
 - Deduction cannot necessarily be fully automated.

The satisfiability problem: enumeration

• Given a formula φ , is φ satisfiable?

```
Boolean SAT(\varphi) {
B:=false
for all \alpha \in 2^{AP(\varphi)}
B = B \lor Eval(\varphi, \alpha)
end
return B
}
```

• There must be a better way to do that in practice.

A Brief Introduction to Logic - Outline

- Propositional Logic :Syntax
- Propositional Logic :Semantics
- Satisfiability and validity
- Normal forms

- Definition: A literal is either an atom or a negation of an atom.
- Let $\phi = \neg (A \lor \neg B)$. Then:
 - Atoms: $AP(\phi) = \{A,B\}$
 - Literals: $lit(\phi) = \{A, \neg B\}$
- Equivalent formulas can have different literals

•
$$\phi = \neg (A \lor \neg B) = \neg A \land B$$

• Now $lit(\phi) = \{\neg A, B\}$

• Definition: a term is a conjunction of literals

- Example: $(A \land \neg B \land C)$
- Definition: a clause is a disjunction of literals
 - Example: $(A \lor \neg B \lor C)$

Negation Normal Form (NNF)

- Definition: A formula is said to be in Negation
 Normal Form (NNF) if it only contains ¬, ∧ and ∨ connectives and only atoms can be negated.
- Examples:
 - $\phi_1 = \neg (A \lor \neg B)$

•
$$\phi_2 = \neg A \wedge B$$

is not in NNF is in NNF

- Every formula can be converted to NNF in linear time:
 - Eliminate all connectives other than \land , \lor , \neg
 - Use De Morgan and double-negation rules to push negations to the right
- Example: $\phi = \neg (A \rightarrow \neg B)$
 - Eliminate ' \rightarrow ': $\phi = \neg(\neg A \lor \neg B)$
 - Push negation using De Morgan: $\phi = (\neg \neg A \land \neg \neg B)$
 - Use Double negation rule: $\phi = (A \land B)$

Disjunctive Normal Form (DNF)

- Definition: A formula is said to be in Disjunctive Normal Form (DNF) if it is a disjunction of terms.
 - In other words, it is a formula of the form

 $\bigvee_{i} (\bigwedge_{j} l_{i,j})$ where $l_{i,j}$ is the *j*-th literal in the *i*-th term.

- Examples
 - $\phi = (A \land \neg B \land C) \lor (\neg A \land D) \lor (B)$ is in DNF
- DNF is a special case of NNF

Converting to DNF

- Every formula can be converted to DNF in exponential time and space:
 - Convert to NNF
 - Distribute disjunctions following the rule: $\models A \land (B \lor C) \leftrightarrow ((A \land B) \lor (A \land C))$
- Example:
 - $\phi = (A \lor B) \land (\neg C \lor D) =$ ((A \le B) \le (\gamma C)) \le ((A \le B) \le D) = (A \le \gamma C) \le (B \le \gamma C) \le (A \le D) \le (B \le D)

Conjunctive Normal Form (CNF)

- Definition: A formula is said to be in Conjunctive Normal Form (CNF) if it is a conjunction of clauses.
 - In other words, it is a formula of the form

$$\bigwedge_{i} (\bigvee_{j} l_{i,j})$$

where $l_{i,j}$ is the *j*-th literal in the *i*-th term.

- Examples • $\phi = (A \lor \neg B \lor C) \land (\neg A \lor D) \land (B)$
- CNF is a special case of NNF

is in CNF

• Every formula can be converted to CNF:

- in exponential time and space with the same set of atoms
- in linear time and space if new variables are added.
 - In this case the original and converted formulas are "equisatisfiable".
 - This technique is called Tseitin's encoding.

Converting to CNF: the exponential way

 $CNF(\phi)$ {

case

 $\phi \text{ is a literal: return } \phi \\ \phi \text{ is } \psi_1 \land \psi_2 \text{: return } CNF(\psi_1) \land CNF(\psi_2) \\ \phi \text{ is } \psi_1 \lor \psi_2 \text{: return } Dist(CNF(\psi_1), CNF(\psi_2))$

 $Dist(\psi_1,\!\psi_2) \ \{$

case

}

 $\begin{array}{l} \psi_1 \text{ is } \phi_{11} \wedge \phi_{12} \text{: return } \text{Dist}(\phi_{11}, \psi_2) \wedge \text{Dist}(\psi_{12}, \psi_2) \\ \psi_2 \text{ is } \phi_{21} \wedge \phi_{22} \text{: return } \text{Dist}(\psi_1, \phi_{21}) \wedge \text{Dist}(\psi_1, \phi_{22}) \\ \text{else: return } \psi_1 \vee \psi_2 \end{array}$

Converting to CNF: the exponential way

- Consider the formula $\phi = (x_1 \land y_1) \lor (x_2 \land y_2)$
- $CNF(\phi) = (x_1 \lor x_2) \land (x_1 \lor y_2) \land (y_1 \lor x_2) \land (y_1 \lor x_2) \land (y_1 \lor y_2)$
- Now consider: $\phi_n = (x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_n \land y_n)$
- Q: How many clauses CNF(φ) returns ?
- A: 2ⁿ

Converting to CNF: Tseitin's encoding

- Consider the formula $\phi = (A \rightarrow (B \land C))$
- The parse tree:

- Associate a new auxiliary variable with each gate.
- Add constraints that define these new variables.
- Finally, enforce the root node.

Converting to CNF: Tseitin's encoding

• Need to satisfy: $(a_1 \leftrightarrow (A \rightarrow a_2)) \land$ $(a_2 \leftrightarrow (B \land C)) \land$ (a_1)

 Each such constraint has a CNF representation with 3 or 4 clauses. Converting to CNF: Tseitin's encoding

• Need to satisfy: $(a_1 \leftrightarrow (A \rightarrow a_2)) \land$ $(a_2 \leftrightarrow (B \land C)) \land$ (a_1)

First: (a₁ ∨ A) ∧ (a₁ ∨ ¬a₂) ∧ (¬a₁ ∨ ¬A ∨ a₂)
Second: (¬a₂ ∨ B) ∧ (¬a₂ ∨ C) ∧ (a₂ ∨ ¬B ∨ ¬C)

- Let's go back to $\phi_n = (x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_n \land y_n)$
- With Tseitin's encoding we need:
 - n auxiliary variables a₁,...,a_n.
 - Each adds 3 constraints.
 - Top clause: $(a_1 \lor \cdots \lor a_n)$
- Hence, we have
 - 3n + 1 clauses, instead of 2ⁿ.
 - 3n variables rather than 2n.

- Time to solve the decision problem for propositional logic.
 - The only algorithm we saw so far was building truth tables.

Two classes of algorithms for validity

- Q: Is φ valid ?
 - Equivalently: is $\neg \phi$ satisfiable?
- Two classes of algorithm for finding out:
 - 1. Enumeration of possible solutions (Truth tables etc).
 - 2. Deduction
- In general (beyond propositional logic):
 - Enumeration is possible only in some theories.
 - Deduction typically cannot be fully automated.

The satisfiability Problem: enumeration

• Given a formula φ , is φ satisfiable?

```
Boolean SAT(\varphi) {
B:=false
for all \alpha \in 2^{AP(\varphi)}
B = B \lor Eval(\varphi, \alpha)
end
return B
}
```

■ NP-Complete (the first-ever! – Cook's theorem)

A Brief Introduction to Logic - Outline

- Propositional Logic :Syntax
- Propositional Logic :Semantics
- Satisfiability and validity
- Normal forms