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A brief introduction to Logic 

(slides from http://www.decision-procedures.org/) 
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A Brief Introduction to Logic - Outline 

 Propositional Logic :Syntax  

 Propositional Logic :Semantics 

 Satisfiability and validity 

 Normal forms 
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Propositional logic: Syntax 

 The symbols of the language: 

 Propositional symbols (Prop): A, B, C,… 

 Connectives:  

   and  

   or  

   not  

   implies  

   equivalent to  

 ©  xor (different than) 

 , >  False, True 

 Parenthesis:(, ). 
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Formulas 

 Grammar of well-formed propositional formulas 

 

 Formula := prop | (Formula) | (Formula o Formula). 

 

 ... where prop 2 Prop and o is one of the binary relations 
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Assignments 

 Definition: A truth-values assignment, , is an 

element of 2Prop (i.e.,   2Prop).  

 In other words, ® is a subset of the variables that are 

assigned true.   

 Equivalently, we can see ® as a mapping from 

variables to truth values:  

 : Prop  {0,1}  

 Example: ®: {A  0, B  1,...} 
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Satisfaction relation (²): intuition 

 An assignment can either satisfy or not satisfy a 

given formula. 

 

  ² φ means 

  satisfies φ or 

 φ holds at  or 

  is a model of φ 

 We will first see an example. 

 Then we will define these notions formally. 
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Example 

 Let Á = (A Ç (B → C)) 

 Let ® = {A  0, B  0, C  1} 

 Q: Does ® satisfy Á?  

 (in symbols: does it hold that ® ² Á ? ) 

 

 

 A: (0 Ç (0 → 1)) = (0 Ç 1) = 1 

 Hence, ® ² Á. 

 

 Let us now formalize an evaluation process. 
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The satisfaction relation (²): formalities 

  ² is a relation:   ² µ (2Prop x Formula) 

 Examples:  

 ({a}, a Ç b)  // the assignment ® = {a} satisfies a Ç b 

 ({a,b}, a Æ b) 

 

 Alternatively: ² µ ({0,1}Prop £ Formula) 

 Examples:  

 (01, a Ç b)  // the assignment ® = {a  0, b  1} satisfies  a Ç b 

 (11, a Æ b) 
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The satisfaction relation (²): formalities 

 ² is defined recursively: 

  ² p if  (p) = true 

  ² φ if  2 φ. 

  ² φ1  φ2 if  ² φ1 and  ² φ2  

  ² φ1  φ2 if  ² φ1 or  ² φ2  

  ² φ
1
  φ2 if  ² φ1 implies  ² φ2 

  ² φ
1
  φ2 if  ² φ1 iff  ² φ2 
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From definition to an evaluation algorithm 

 Truth Evaluation Problem 

 Given φ  Formula and    2AP(φ),  does  ² φ ? 

 

Eval(φ, ){ 

If φ  A, return (A). 

If φ  (φ1) return Eval(φ1, )) 

If φ  (φ1 o φ2)  

return Eval(φ1, ) o Eval(φ2, ) 

} 

 

 Eval uses polynomial time and space. 
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Set of assignments 

 Intuition: a formula specifies a set of truth 

assignments. 

 Function models: Formula  22Prop  

(a formula  set of satisfying assignments) 

 Recursive definition:  

 models(A) = { |(A) = 1}, A  Prop 

 models(φ1) = 2Prop – models(φ1) 

 models(φ1φ2) = models(φ1)  models(φ2) 

 models(φ1φ2) = models(φ1)  models(φ2) 

 models(φ1φ2) = (2Prop – models(φ1))  models(φ2) 
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Theorem 

 Let φ  Formula and   2Prop, then the following 

statements are equivalent: 

1.  ² φ 

2.   models(φ) 
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Semantic Classification of formulas 

 A formula φ is called valid if models(φ) = 2Prop.  

(also called a tautology). 

 

 A formula φ is called satisfiable if models(φ)  ;.  

 

 A formula φ is called unsatisfiable if models(φ) = ;.  

(also called a contradiction). 

unsatisfiable 
satisfiable 

valid 
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Validity, satisfiability... in truth tables  

p Ç :q (p Æ :p) (p → (q → q)) q p 

1 0 1 0 0 

0 0 1 1 0 

1 0 1 0 1 

1 0 1 1 1 
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Look what we can do now... 

 

 We can write: 

 

  ² Á  when Á is valid 

 

  2 Á   when Á is not valid 

 

  2 :Á   when Á is satisfiable 

 

  ² :Á   when Á is unsatisfiable 
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The decision problem of formulas 

 The decision problem: 

 

Given a propositional formula Á, is Á satisfiable ?  

 

 

 

 An algorithm that always terminates with a correct 

answer to this problem is called a decision 

procedure for propositional logic.  
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Two classes of algorithms for validity 

 Q: Is φ satisfiable (/:φ is valid) ?  

 Complexity: NP-Complete (the first-ever! – Cook’s 

theorem) 

 

 Two classes of algorithms for finding out: 

1. Enumeration of possible solutions (Truth tables etc). 

2. Deduction 

 

 More generally (beyond propositional logic):  

 Enumeration is possible only in some logics. 

 Deduction cannot necessarily be fully automated. 
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The satisfiability problem: enumeration 

 Given a formula φ, is φ satisfiable? 

 

Boolean SAT(φ) { 

 B:=false 

 for all   2AP(φ)  

 B = B  Eval(φ,) 

 end 

 return B 

} 

 

 There must be a better way to do that in practice. 
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A Brief Introduction to Logic - Outline 

 Propositional Logic :Syntax  

 Propositional Logic :Semantics 

 Satisfiability and validity 

 Normal forms 
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Definitions… 

 Definition: A literal is either an atom or a negation of 

an atom. 

 Let  = :(A Ç :B). Then: 

 Atoms: AP() = {A,B} 

 Literals: lit() = {A, :B} 

 

 Equivalent formulas can have different literals 

   = :(A Ç :B) = :A Æ B 

 Now lit() = {:A, B} 
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Definitions… 

 Definition: a term is a conjunction of literals 

 Example: (A Æ :B Æ C)  

 

 Definition: a clause is a disjunction of literals 

 Example: (A Ç :B Ç C) 
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Negation Normal Form (NNF) 

 Definition: A formula is said to be in Negation 

Normal Form (NNF) if it only contains :, Æ and Ç 

connectives and only atoms can be negated. 

 

 Examples: 

  1 = :(A Ç :B) is not in NNF 

  2 = :A Æ B  is in NNF 
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Converting to NNF 

 Every formula can be converted to NNF in linear 

time: 

 Eliminate all connectives other than Æ, Ç, : 

 Use De Morgan and double-negation rules to push 

negations to the right 

 Example:  = :(A ! :B) 

 Eliminate ‘!’:  = :(:A Ç :B) 

 Push negation using De Morgan:  = (::A Æ ::B) 

 Use Double negation rule:  = (A Æ B) 
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Disjunctive Normal Form (DNF) 

 Definition: A formula is said to be in Disjunctive 

Normal Form (DNF) if it is a disjunction of terms. 

 In other words, it is a formula of the form  

 

 

where li,j is the j-th literal in the i-th term. 

 

 Examples 

   = (A Æ :B Æ C) Ç (:A Æ D) Ç (B)  is in DNF 

 

 DNF is a special case of NNF 
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Converting to DNF 

 Every formula can be converted to DNF in 

exponential time and space: 

 Convert to NNF 

 Distribute disjunctions following the rule:  
² A Æ (B Ç C) $ ((A Æ B) Ç (A Æ C)) 

 Example: 

   = (A Ç B) Æ (:C Ç D) =   

((A Ç B) Æ (:C)) Ç ((A Ç B) Æ D) =  

(A Æ :C) Ç (B Æ :C) Ç (A Æ D) Ç (B Æ D) 
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Conjunctive Normal Form (CNF) 

 Definition: A formula is said to be in Conjunctive 

Normal Form (CNF) if it is a conjunction of clauses. 

 In other words, it is a formula of the form  

 

 

where li,j is the j-th literal in the i-th term. 

 

 Examples 

   = (A Ç :B Ç C) Æ  (:A Ç D) Æ (B)  is in CNF 

 

 CNF is a special case of NNF 
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Converting to CNF 

 Every formula can be converted to CNF: 

 

 in exponential time and space with the same set of atoms 

 

 in linear time and space if new variables are added.  

 In this case the original and converted formulas are “equi-

satisfiable”.  

 This technique is called Tseitin’s encoding.  
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Converting to CNF: the exponential way 

CNF() { 

case 

  is a literal: return  

  is 1 Æ 2: return CNF(1) Æ CNF(2) 

  is 1 Ç 2: return Dist(CNF(1),CNF(2)) 

} 

 

Dist(1,2) { 

case 

 1 is 11 Æ 12: return Dist(11,2) Æ Dist(12,2) 

2 is 21 Æ 22: return Dist(1,21) Æ Dist(1,22) 

else: return 1 Ç 2 
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Converting to CNF: the exponential way 

 Consider the formula  

 = (x1 Æ y1) Ç (x2 Æ y2)  

 CNF()=  

(x1 Ç x2) Æ  

(x1 Ç y2) Æ  

(y1 Ç x2) Æ  

(y1 Ç y2)   

 

 Now consider: n = (x1 Æ y1) Ç (x2 Æ y2) Ç  Ç (xn Æ yn) 

 Q: How many clauses CNF() returns ?  

 A: 2n 
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Converting to CNF: Tseitin’s encoding 

 Consider the formula  = (A ! (B Æ C)) 

 The parse tree:  

 

 

 

 

 

 Associate a new auxiliary variable with each gate. 

 Add constraints that define these new variables. 

 Finally, enforce the root node. 

A Æ 

B C 

! a1 

a2 
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Converting to CNF: Tseitin’s encoding 

 Need to satisfy:  

(a1 $ (A ! a2)) Æ 

(a2 $ (B Æ C)) Æ 

(a1) 

 

 

 

 

 Each such constraint has a CNF representation with 3 

or 4 clauses. 

A Æ 

B C 

! a1 

a2 
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Converting to CNF: Tseitin’s encoding 

 Need to satisfy:  

(a1 $ (A ! a2)) Æ 

(a2 $ (B Æ C)) Æ 

(a1) 

 

 First:  (a1 Ç A) Æ (a1 Ç :a2) Æ (:a1 Ç :A Ç a2) 

 Second: (:a2 Ç B) Æ (:a2 Ç C) Æ (a2 Ç :B Ç :C) 
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Converting to CNF: Tseitin’s encoding 

 Let’s go back to  
n = (x1 Æ y1) Ç (x2 Æ y2) Ç  Ç (xn Æ yn) 

 With Tseitin’s encoding we need:  

 n auxiliary variables a1,…,an.  

 Each adds 3 constraints. 

 Top clause: (a1 Ç  Ç an) 

 

 Hence, we have  

 3n + 1 clauses, instead of 2n. 

 3n variables rather than 2n. 
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What now? 

 Time to solve the decision problem for propositional 

logic. 

 

 The only algorithm we saw so far was building truth tables. 
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Two classes of algorithms for validity 

 Q: Is φ valid ?  

 Equivalently: is :φ satisfiable?  

 Two classes of algorithm for finding out: 

1. Enumeration of possible solutions (Truth tables etc). 

2. Deduction 

 

 In general (beyond propositional logic):  

 Enumeration is possible only in some theories. 

 Deduction typically cannot be fully automated. 
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The satisfiability Problem: enumeration 

 Given a formula φ, is φ satisfiable? 

 

Boolean SAT(φ) { 

 B:=false 

 for all   2AP(φ)  

 B = B  Eval(φ,) 

 end 

 return B 

} 

 NP-Complete (the first-ever! – Cook’s theorem) 
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A Brief Introduction to Logic - Outline 

 Propositional Logic :Syntax  

 Propositional Logic :Semantics 

 Satisfiability and validity 

 Normal forms 

 


