
1

A brief introduction to Logic

(slides from http://www.decision-procedures.org/)

2

A Brief Introduction to Logic - Outline

 Propositional Logic :Syntax

 Propositional Logic :Semantics

 Satisfiability and validity

 Normal forms

3

Propositional logic: Syntax

 The symbols of the language:

 Propositional symbols (Prop): A, B, C,…

 Connectives:

 and

 or

 not

 implies

 equivalent to

 © xor (different than)

 , > False, True

 Parenthesis:(,).

4

Formulas

 Grammar of well-formed propositional formulas

 Formula := prop | (Formula) | (Formula o Formula).

 ... where prop 2 Prop and o is one of the binary relations

5

Assignments

 Definition: A truth-values assignment, , is an

element of 2Prop (i.e., 2Prop).

 In other words, ® is a subset of the variables that are

assigned true.

 Equivalently, we can see ® as a mapping from

variables to truth values:

 : Prop {0,1}

 Example: ®: {A 0, B 1,...}

6

Satisfaction relation (²): intuition

 An assignment can either satisfy or not satisfy a

given formula.

 ² φ means

 satisfies φ or

 φ holds at or

 is a model of φ

 We will first see an example.

 Then we will define these notions formally.

7

Example

 Let Á = (A Ç (B → C))

 Let ® = {A 0, B 0, C 1}

 Q: Does ® satisfy Á?

 (in symbols: does it hold that ® ² Á ?)

 A: (0 Ç (0 → 1)) = (0 Ç 1) = 1

 Hence, ® ² Á.

 Let us now formalize an evaluation process.

8

The satisfaction relation (²): formalities

 ² is a relation: ² µ (2Prop x Formula)

 Examples:

 ({a}, a Ç b) // the assignment ® = {a} satisfies a Ç b

 ({a,b}, a Æ b)

 Alternatively: ² µ ({0,1}Prop £ Formula)

 Examples:

 (01, a Ç b) // the assignment ® = {a 0, b 1} satisfies a Ç b

 (11, a Æ b)

9

The satisfaction relation (²): formalities

 ² is defined recursively:

 ² p if (p) = true

 ² φ if 2 φ.

 ² φ1 φ2 if ² φ1 and ² φ2

 ² φ1 φ2 if ² φ1 or ² φ2

 ² φ
1
 φ2 if ² φ1 implies ² φ2

 ² φ
1
 φ2 if ² φ1 iff ² φ2

10

From definition to an evaluation algorithm

 Truth Evaluation Problem

 Given φ Formula and 2AP(φ), does ² φ ?

Eval(φ,){

If φ A, return (A).

If φ (φ1) return Eval(φ1,))

If φ (φ1 o φ2)

return Eval(φ1,) o Eval(φ2,)

}

 Eval uses polynomial time and space.

11

Set of assignments

 Intuition: a formula specifies a set of truth

assignments.

 Function models: Formula 22Prop

(a formula set of satisfying assignments)

 Recursive definition:

 models(A) = { |(A) = 1}, A Prop

 models(φ1) = 2Prop – models(φ1)

 models(φ1φ2) = models(φ1) models(φ2)

 models(φ1φ2) = models(φ1) models(φ2)

 models(φ1φ2) = (2Prop – models(φ1)) models(φ2)

12

Theorem

 Let φ Formula and 2Prop, then the following

statements are equivalent:

1. ² φ

2. models(φ)

13

Semantic Classification of formulas

 A formula φ is called valid if models(φ) = 2Prop.

(also called a tautology).

 A formula φ is called satisfiable if models(φ) ;.

 A formula φ is called unsatisfiable if models(φ) = ;.

(also called a contradiction).

unsatisfiable
satisfiable

valid

14

Validity, satisfiability... in truth tables

p Ç :q (p Æ :p) (p → (q → q)) q p

1 0 1 0 0

0 0 1 1 0

1 0 1 0 1

1 0 1 1 1

15

Look what we can do now...

 We can write:

 ² Á when Á is valid

 2 Á when Á is not valid

 2 :Á when Á is satisfiable

 ² :Á when Á is unsatisfiable

16

The decision problem of formulas

 The decision problem:

Given a propositional formula Á, is Á satisfiable ?

 An algorithm that always terminates with a correct

answer to this problem is called a decision

procedure for propositional logic.

17

Two classes of algorithms for validity

 Q: Is φ satisfiable (/:φ is valid) ?

 Complexity: NP-Complete (the first-ever! – Cook’s

theorem)

 Two classes of algorithms for finding out:

1. Enumeration of possible solutions (Truth tables etc).

2. Deduction

 More generally (beyond propositional logic):

 Enumeration is possible only in some logics.

 Deduction cannot necessarily be fully automated.

18

The satisfiability problem: enumeration

 Given a formula φ, is φ satisfiable?

Boolean SAT(φ) {

 B:=false

 for all 2AP(φ)

 B = B Eval(φ,)

 end

 return B

}

 There must be a better way to do that in practice.

19

A Brief Introduction to Logic - Outline

 Propositional Logic :Syntax

 Propositional Logic :Semantics

 Satisfiability and validity

 Normal forms

20

Definitions…

 Definition: A literal is either an atom or a negation of

an atom.

 Let = :(A Ç :B). Then:

 Atoms: AP() = {A,B}

 Literals: lit() = {A, :B}

 Equivalent formulas can have different literals

 = :(A Ç :B) = :A Æ B

 Now lit() = {:A, B}

21

Definitions…

 Definition: a term is a conjunction of literals

 Example: (A Æ :B Æ C)

 Definition: a clause is a disjunction of literals

 Example: (A Ç :B Ç C)

22

Negation Normal Form (NNF)

 Definition: A formula is said to be in Negation

Normal Form (NNF) if it only contains :, Æ and Ç

connectives and only atoms can be negated.

 Examples:

 1 = :(A Ç :B) is not in NNF

 2 = :A Æ B is in NNF

23

Converting to NNF

 Every formula can be converted to NNF in linear

time:

 Eliminate all connectives other than Æ, Ç, :

 Use De Morgan and double-negation rules to push

negations to the right

 Example: = :(A ! :B)

 Eliminate ‘!’: = :(:A Ç :B)

 Push negation using De Morgan: = (::A Æ ::B)

 Use Double negation rule: = (A Æ B)

24

Disjunctive Normal Form (DNF)

 Definition: A formula is said to be in Disjunctive

Normal Form (DNF) if it is a disjunction of terms.

 In other words, it is a formula of the form

where li,j is the j-th literal in the i-th term.

 Examples

 = (A Æ :B Æ C) Ç (:A Æ D) Ç (B) is in DNF

 DNF is a special case of NNF

25

Converting to DNF

 Every formula can be converted to DNF in

exponential time and space:

 Convert to NNF

 Distribute disjunctions following the rule:
² A Æ (B Ç C) $ ((A Æ B) Ç (A Æ C))

 Example:

 = (A Ç B) Æ (:C Ç D) =

((A Ç B) Æ (:C)) Ç ((A Ç B) Æ D) =

(A Æ :C) Ç (B Æ :C) Ç (A Æ D) Ç (B Æ D)

26

Conjunctive Normal Form (CNF)

 Definition: A formula is said to be in Conjunctive

Normal Form (CNF) if it is a conjunction of clauses.

 In other words, it is a formula of the form

where li,j is the j-th literal in the i-th term.

 Examples

 = (A Ç :B Ç C) Æ (:A Ç D) Æ (B) is in CNF

 CNF is a special case of NNF

27

Converting to CNF

 Every formula can be converted to CNF:

 in exponential time and space with the same set of atoms

 in linear time and space if new variables are added.

 In this case the original and converted formulas are “equi-

satisfiable”.

 This technique is called Tseitin’s encoding.

28

Converting to CNF: the exponential way

CNF() {

case

 is a literal: return

 is 1 Æ 2: return CNF(1) Æ CNF(2)

 is 1 Ç 2: return Dist(CNF(1),CNF(2))

}

Dist(1,2) {

case

 1 is 11 Æ 12: return Dist(11,2) Æ Dist(12,2)

2 is 21 Æ 22: return Dist(1,21) Æ Dist(1,22)

else: return 1 Ç 2

29

Converting to CNF: the exponential way

 Consider the formula

 = (x1 Æ y1) Ç (x2 Æ y2)

 CNF()=

(x1 Ç x2) Æ

(x1 Ç y2) Æ

(y1 Ç x2) Æ

(y1 Ç y2)

 Now consider: n = (x1 Æ y1) Ç (x2 Æ y2) Ç Ç (xn Æ yn)

 Q: How many clauses CNF() returns ?

 A: 2n

30

Converting to CNF: Tseitin’s encoding

 Consider the formula = (A ! (B Æ C))

 The parse tree:

 Associate a new auxiliary variable with each gate.

 Add constraints that define these new variables.

 Finally, enforce the root node.

A Æ

B C

! a1

a2

31

Converting to CNF: Tseitin’s encoding

 Need to satisfy:

(a1 $ (A ! a2)) Æ

(a2 $ (B Æ C)) Æ

(a1)

 Each such constraint has a CNF representation with 3

or 4 clauses.

A Æ

B C

! a1

a2

32

Converting to CNF: Tseitin’s encoding

 Need to satisfy:

(a1 $ (A ! a2)) Æ

(a2 $ (B Æ C)) Æ

(a1)

 First: (a1 Ç A) Æ (a1 Ç :a2) Æ (:a1 Ç :A Ç a2)

 Second: (:a2 Ç B) Æ (:a2 Ç C) Æ (a2 Ç :B Ç :C)

33

Converting to CNF: Tseitin’s encoding

 Let’s go back to
n = (x1 Æ y1) Ç (x2 Æ y2) Ç Ç (xn Æ yn)

 With Tseitin’s encoding we need:

 n auxiliary variables a1,…,an.

 Each adds 3 constraints.

 Top clause: (a1 Ç Ç an)

 Hence, we have

 3n + 1 clauses, instead of 2n.

 3n variables rather than 2n.

34

What now?

 Time to solve the decision problem for propositional

logic.

 The only algorithm we saw so far was building truth tables.

35

Two classes of algorithms for validity

 Q: Is φ valid ?

 Equivalently: is :φ satisfiable?

 Two classes of algorithm for finding out:

1. Enumeration of possible solutions (Truth tables etc).

2. Deduction

 In general (beyond propositional logic):

 Enumeration is possible only in some theories.

 Deduction typically cannot be fully automated.

36

The satisfiability Problem: enumeration

 Given a formula φ, is φ satisfiable?

Boolean SAT(φ) {

 B:=false

 for all 2AP(φ)

 B = B Eval(φ,)

 end

 return B

}

 NP-Complete (the first-ever! – Cook’s theorem)

37

A Brief Introduction to Logic - Outline

 Propositional Logic :Syntax

 Propositional Logic :Semantics

 Satisfiability and validity

 Normal forms

