
1

A brief introduction to Logic

(slides from http://www.decision-procedures.org/)

2

A Brief Introduction to Logic - Outline

 Propositional Logic :Syntax

 Propositional Logic :Semantics

 Satisfiability and validity

 Normal forms

3

Propositional logic: Syntax

 The symbols of the language:

 Propositional symbols (Prop): A, B, C,…

 Connectives:

  and

  or

  not

  implies

  equivalent to

 © xor (different than)

 , > False, True

 Parenthesis:(,).

4

Formulas

 Grammar of well-formed propositional formulas

 Formula := prop | (Formula) | (Formula o Formula).

 ... where prop 2 Prop and o is one of the binary relations

5

Assignments

 Definition: A truth-values assignment, , is an

element of 2Prop (i.e.,   2Prop).

 In other words, ® is a subset of the variables that are

assigned true.

 Equivalently, we can see ® as a mapping from

variables to truth values:

 : Prop  {0,1}

 Example: ®: {A  0, B  1,...}

6

Satisfaction relation (²): intuition

 An assignment can either satisfy or not satisfy a

given formula.

  ² φ means

  satisfies φ or

 φ holds at  or

  is a model of φ

 We will first see an example.

 Then we will define these notions formally.

7

Example

 Let Á = (A Ç (B → C))

 Let ® = {A  0, B  0, C  1}

 Q: Does ® satisfy Á?

 (in symbols: does it hold that ® ² Á ?)

 A: (0 Ç (0 → 1)) = (0 Ç 1) = 1

 Hence, ® ² Á.

 Let us now formalize an evaluation process.

8

The satisfaction relation (²): formalities

 ² is a relation: ² µ (2Prop x Formula)

 Examples:

 ({a}, a Ç b) // the assignment ® = {a} satisfies a Ç b

 ({a,b}, a Æ b)

 Alternatively: ² µ ({0,1}Prop £ Formula)

 Examples:

 (01, a Ç b) // the assignment ® = {a  0, b  1} satisfies a Ç b

 (11, a Æ b)

9

The satisfaction relation (²): formalities

 ² is defined recursively:

  ² p if  (p) = true

  ² φ if  2 φ.

  ² φ1  φ2 if  ² φ1 and  ² φ2

  ² φ1  φ2 if  ² φ1 or  ² φ2

  ² φ
1
  φ2 if  ² φ1 implies  ² φ2

  ² φ
1
  φ2 if  ² φ1 iff  ² φ2

10

From definition to an evaluation algorithm

 Truth Evaluation Problem

 Given φ  Formula and   2AP(φ), does  ² φ ?

Eval(φ, ){

If φ  A, return (A).

If φ  (φ1) return Eval(φ1, ))

If φ  (φ1 o φ2)

return Eval(φ1, ) o Eval(φ2, )

}

 Eval uses polynomial time and space.

11

Set of assignments

 Intuition: a formula specifies a set of truth

assignments.

 Function models: Formula  22Prop

(a formula  set of satisfying assignments)

 Recursive definition:

 models(A) = { |(A) = 1}, A  Prop

 models(φ1) = 2Prop – models(φ1)

 models(φ1φ2) = models(φ1)  models(φ2)

 models(φ1φ2) = models(φ1)  models(φ2)

 models(φ1φ2) = (2Prop – models(φ1))  models(φ2)

12

Theorem

 Let φ  Formula and   2Prop, then the following

statements are equivalent:

1.  ² φ

2.   models(φ)

13

Semantic Classification of formulas

 A formula φ is called valid if models(φ) = 2Prop.

(also called a tautology).

 A formula φ is called satisfiable if models(φ)  ;.

 A formula φ is called unsatisfiable if models(φ) = ;.

(also called a contradiction).

unsatisfiable
satisfiable

valid

14

Validity, satisfiability... in truth tables

p Ç :q (p Æ :p) (p → (q → q)) q p

1 0 1 0 0

0 0 1 1 0

1 0 1 0 1

1 0 1 1 1

15

Look what we can do now...

 We can write:

 ² Á when Á is valid

 2 Á when Á is not valid

 2 :Á when Á is satisfiable

 ² :Á when Á is unsatisfiable

16

The decision problem of formulas

 The decision problem:

Given a propositional formula Á, is Á satisfiable ?

 An algorithm that always terminates with a correct

answer to this problem is called a decision

procedure for propositional logic.

17

Two classes of algorithms for validity

 Q: Is φ satisfiable (/:φ is valid) ?

 Complexity: NP-Complete (the first-ever! – Cook’s

theorem)

 Two classes of algorithms for finding out:

1. Enumeration of possible solutions (Truth tables etc).

2. Deduction

 More generally (beyond propositional logic):

 Enumeration is possible only in some logics.

 Deduction cannot necessarily be fully automated.

18

The satisfiability problem: enumeration

 Given a formula φ, is φ satisfiable?

Boolean SAT(φ) {

 B:=false

 for all   2AP(φ)

 B = B  Eval(φ,)

 end

 return B

}

 There must be a better way to do that in practice.

19

A Brief Introduction to Logic - Outline

 Propositional Logic :Syntax

 Propositional Logic :Semantics

 Satisfiability and validity

 Normal forms

20

Definitions…

 Definition: A literal is either an atom or a negation of

an atom.

 Let  = :(A Ç :B). Then:

 Atoms: AP() = {A,B}

 Literals: lit() = {A, :B}

 Equivalent formulas can have different literals

  = :(A Ç :B) = :A Æ B

 Now lit() = {:A, B}

21

Definitions…

 Definition: a term is a conjunction of literals

 Example: (A Æ :B Æ C)

 Definition: a clause is a disjunction of literals

 Example: (A Ç :B Ç C)

22

Negation Normal Form (NNF)

 Definition: A formula is said to be in Negation

Normal Form (NNF) if it only contains :, Æ and Ç

connectives and only atoms can be negated.

 Examples:

 1 = :(A Ç :B) is not in NNF

 2 = :A Æ B is in NNF

23

Converting to NNF

 Every formula can be converted to NNF in linear

time:

 Eliminate all connectives other than Æ, Ç, :

 Use De Morgan and double-negation rules to push

negations to the right

 Example:  = :(A ! :B)

 Eliminate ‘!’:  = :(:A Ç :B)

 Push negation using De Morgan:  = (::A Æ ::B)

 Use Double negation rule:  = (A Æ B)

24

Disjunctive Normal Form (DNF)

 Definition: A formula is said to be in Disjunctive

Normal Form (DNF) if it is a disjunction of terms.

 In other words, it is a formula of the form

where li,j is the j-th literal in the i-th term.

 Examples

  = (A Æ :B Æ C) Ç (:A Æ D) Ç (B) is in DNF

 DNF is a special case of NNF

25

Converting to DNF

 Every formula can be converted to DNF in

exponential time and space:

 Convert to NNF

 Distribute disjunctions following the rule:
² A Æ (B Ç C) $ ((A Æ B) Ç (A Æ C))

 Example:

  = (A Ç B) Æ (:C Ç D) =

((A Ç B) Æ (:C)) Ç ((A Ç B) Æ D) =

(A Æ :C) Ç (B Æ :C) Ç (A Æ D) Ç (B Æ D)

26

Conjunctive Normal Form (CNF)

 Definition: A formula is said to be in Conjunctive

Normal Form (CNF) if it is a conjunction of clauses.

 In other words, it is a formula of the form

where li,j is the j-th literal in the i-th term.

 Examples

  = (A Ç :B Ç C) Æ (:A Ç D) Æ (B) is in CNF

 CNF is a special case of NNF

27

Converting to CNF

 Every formula can be converted to CNF:

 in exponential time and space with the same set of atoms

 in linear time and space if new variables are added.

 In this case the original and converted formulas are “equi-

satisfiable”.

 This technique is called Tseitin’s encoding.

28

Converting to CNF: the exponential way

CNF() {

case

  is a literal: return 

  is 1 Æ 2: return CNF(1) Æ CNF(2)

  is 1 Ç 2: return Dist(CNF(1),CNF(2))

}

Dist(1,2) {

case

 1 is 11 Æ 12: return Dist(11,2) Æ Dist(12,2)

2 is 21 Æ 22: return Dist(1,21) Æ Dist(1,22)

else: return 1 Ç 2

29

Converting to CNF: the exponential way

 Consider the formula

 = (x1 Æ y1) Ç (x2 Æ y2)

 CNF()=

(x1 Ç x2) Æ

(x1 Ç y2) Æ

(y1 Ç x2) Æ

(y1 Ç y2)

 Now consider: n = (x1 Æ y1) Ç (x2 Æ y2) Ç  Ç (xn Æ yn)

 Q: How many clauses CNF() returns ?

 A: 2n

30

Converting to CNF: Tseitin’s encoding

 Consider the formula  = (A ! (B Æ C))

 The parse tree:

 Associate a new auxiliary variable with each gate.

 Add constraints that define these new variables.

 Finally, enforce the root node.

A Æ

B C

! a1

a2

31

Converting to CNF: Tseitin’s encoding

 Need to satisfy:

(a1 $ (A ! a2)) Æ

(a2 $ (B Æ C)) Æ

(a1)

 Each such constraint has a CNF representation with 3

or 4 clauses.

A Æ

B C

! a1

a2

32

Converting to CNF: Tseitin’s encoding

 Need to satisfy:

(a1 $ (A ! a2)) Æ

(a2 $ (B Æ C)) Æ

(a1)

 First: (a1 Ç A) Æ (a1 Ç :a2) Æ (:a1 Ç :A Ç a2)

 Second: (:a2 Ç B) Æ (:a2 Ç C) Æ (a2 Ç :B Ç :C)

33

Converting to CNF: Tseitin’s encoding

 Let’s go back to
n = (x1 Æ y1) Ç (x2 Æ y2) Ç  Ç (xn Æ yn)

 With Tseitin’s encoding we need:

 n auxiliary variables a1,…,an.

 Each adds 3 constraints.

 Top clause: (a1 Ç  Ç an)

 Hence, we have

 3n + 1 clauses, instead of 2n.

 3n variables rather than 2n.

34

What now?

 Time to solve the decision problem for propositional

logic.

 The only algorithm we saw so far was building truth tables.

35

Two classes of algorithms for validity

 Q: Is φ valid ?

 Equivalently: is :φ satisfiable?

 Two classes of algorithm for finding out:

1. Enumeration of possible solutions (Truth tables etc).

2. Deduction

 In general (beyond propositional logic):

 Enumeration is possible only in some theories.

 Deduction typically cannot be fully automated.

36

The satisfiability Problem: enumeration

 Given a formula φ, is φ satisfiable?

Boolean SAT(φ) {

 B:=false

 for all   2AP(φ)

 B = B  Eval(φ,)

 end

 return B

}

 NP-Complete (the first-ever! – Cook’s theorem)

37

A Brief Introduction to Logic - Outline

 Propositional Logic :Syntax

 Propositional Logic :Semantics

 Satisfiability and validity

 Normal forms

