Decision Procedures An Algorithmic Point of View

1

SAT

(slides from http://www.decision-procedures.org/)

Daniel Kroening and Ofer Strichman

Next: Deciding Propositional Formulas

SAT solvers

Binary Decision Diagrams

A Basic SAT algorithm

Given ϕ in CNF: (x,y,z),(-x,y),(-y,z),(-x,-y,-z)

SAT made some progress...

4

Basic Backtracking Search

- Organize the search in the form of a decision tree
 - □ Each node corresponds to a decision
 - □ Definition: Decision Level (DL) is the depth of the node in the decision tree.
 - □ Notation: x=v@d $x \in \{0,1\}$ is assigned to *v* at decision level *d*

Backtracking Search in Action

$$\begin{array}{c}
\omega_{1} = (x_{2} \lor x_{3}) \\
\omega_{2} = (-x_{1} \lor -x_{4}) \\
\omega_{3} = (-x_{2} \lor x_{4}) \\
\end{array}$$

$$\begin{array}{c}
\omega_{1} = (x_{2} \lor x_{3}) \\
\omega_{2} = (-x_{1} \lor -x_{4}) \\
\omega_{3} = (-x_{2} \lor x_{4}) \\
\end{array}$$

$$\begin{array}{c}
\omega_{3} = (-x_{2} \lor x_{4}) \\
\omega_{3} = 1 @ 1 \Rightarrow x_{4} = 0 @ 1 \Rightarrow x_{2} = 0 @ 1 \\
\Rightarrow x_{3} = 1 @ 1 \\
\Rightarrow x_{3} = 1 @ 1 \\
\end{array}$$

No backtrack in this example, regardless of the decision!

An algorithmic point of view

Backtracking Search in Action

Status of a clause

- A clause can be
 - □ Satisfied: at least one literal is satisfied
 - □ Unsatisfied: all literals are assigned but non are satisfied
 - Unit: all but one literals are assigned but none are satisfied
 Unresolved: all other cases

• Example:
$$C = (x_1 \lor x_2 \lor x_3)$$

x_1	x_2	x_3	C	
1	0		Satisfied	
0	0	0	Unsatisfied	
0	0		Unit	
	0		Unresolved	

Decision heuristics - DLIS

<u>DLIS</u> (Dynamic Largest Individual Sum) – choose the assignment that increases the most the number of satisfied clauses

■ For a given variable *x*:

- \Box C_{xp} # unresolved clauses in which x appears positively
- \Box C_{xn} # unresolved clauses in which x appears negatively
- \Box Let x be the literal for which C_{xp} is maximal
- \Box Let y be the literal for which C_{yn} is maximal
- □ If $C_{xp} > C_{yn}$ choose x and assign it TRUE
- \Box Otherwise choose *y* and assign it FALSE
- Requires l (#literals) queries for each decision.

Decision heuristics - JW

Jeroslow-Wang method

Compute for every clause ω and every variable l (in each phase):

$$\bullet \quad J(l) := \sum_{l \in \omega, \omega \in \varphi} 2^{-|\omega|}$$

- Choose a variable l that maximizes J(l).
- This gives an exponentially higher weight to literals in shorter clauses.

Pause... ||

- We will see other (more advanced) decision Heuristics soon.
- These heuristics are integrated with a mechanism called Learning with Conflict-Clauses, which we will learn next.

Implication graphs and learning: option #1

Current truth assignment: $\{x_9=0@1, x_{10}=0@3, x_{11}=0@3, x_{12}=1@2, x_{13}=1@2\}$ Current decision assignment: $\{x_1=1@6\}$

We learn the *conflict clause* ω_{10} : $(\neg x_1 \lor x_9 \lor x_{11} \lor x_{10})$

Decision Procedures An algorithmic point of view

Implication graph, flipped assignment option #1

$$\begin{split}
\omega_1 &= (\neg x_1 \lor x_2) \\
\omega_2 &= (\neg x_1 \lor x_3 \lor x_9) \\
\omega_3 &= (\neg x_2 \lor \neg x_3 \lor x_4) \\
\omega_4 &= (\neg x_4 \lor x_5 \lor x_{10}) \\
\omega_5 &= (\neg x_4 \lor x_6 \lor x_{11}) \\
\omega_6 &= (\neg x_5 \lor x_6) \\
\omega_7 &= (x_1 \lor x_7 \lor \neg x_{12}) \\
\omega_8 &= (x_1 \lor x_8) \\
\omega_9 &= (\neg x_7 \lor \neg x_8 \lor \neg x_{13}) \\
\omega_{10} &: (\neg x_1 \lor x_9 \lor x_{11} \lor x_{10})
\end{split}$$

where should we backtrack to now ?

An algorithmic point of view

Non-chronological backtracking

Non-chronological backtracking

- So the rule is: backtrack to the largest decision level in the conflict clause.
- This works for both the initial conflict and the conflict after the flip.
- Q: What if the flipped assignment works?A: Change the decision retroactively.

Non-chronological Backtracking

Decision Procedures An algorithmic point of view

More Conflict Clauses

- Def: A Conflict Clause is any clause implied by the formula
- Let *L* be a set of literals labeling nodes that form a cut in the implication graph, separating the conflict node from the roots.
- Claim: $\bigvee_{l \in L} \neg l$ is a Conflict Clause.

1. $(x_{10} \lor \neg x_1 \lor x_9 \lor x_{11})$ 2. $(x_{10} \lor \neg x_4 \lor x_{11})$ 3. $(x_{10} \lor \neg x_2 \lor \neg x_3 \lor x_{11})$

Decision Procedures An algorithmic point of view

Conflict clauses

- How many clauses should we add ?
- If not all, then which ones ?
 - \Box Shorter ones ?
 - □ Check their influence on the backtracking level ?
 - \Box The most "influential"?

Conflict clauses

- Def: An Asserting Clause is a Conflict Clause with a single literal from the current decision level.
 Backtracking (to the right level) makes it a Unit clause.
- Asserting clauses are those that force an immediate change in the search path.
- Modern solvers only consider Asserting Clauses.

Unique Implication Points (UIP's)

- Definition: A Unique Implication Point (UIP) is an internal node in the Implication Graph that all paths from the decision to the conflict node go through it.
- The First-UIP is the closest UIP to the conflict.

Conflict-driven backtracking (option #2)

- Conflict clause: $(x_{10} \lor \neg x_4 \lor x_{11})$
- With standard Non-Chronological Backtracking we backtracked to DL = 6.
- Conflict-driven Backtrack: backtrack to the second highest decision level in the clause (without erasing it).
- In this case, to DL = 3.

• Q: why?

Conflict-driven Non-chronological Backtracking

Decision Procedures An algorithmic point of view

...

Conflict-Driven Backtracking

- So the rule is: backtrack to the second highest decision level *dl*, but do not erase it.
- This way the literal with the currently highest decision level will be implied in DL = dl.
- Q: what if the conflict clause has a single literal ?
 □ For example, from (x∨ ¬y) ∧ (x ∨ y) and decision x=0, we learn the conflict clause (x).

Conflict clauses and Resolution

The Binary-resolution is a sound inference rule:

$$\frac{(a_1 \lor \ldots \lor a_n \lor \beta) \qquad (b_1 \lor \ldots \lor b_m \lor (\neg \beta))}{(a_1 \lor \ldots \lor a_n \lor b_1 \lor \ldots \lor b_m)}$$
(Binary Resolution)

• Example:

$$\frac{(x_1 \lor x_2) \qquad (\neg x_1 \lor x_3 \lor x_4)}{(x_2 \lor x_3 \lor x_4)}$$

Decision Procedures An algorithmic point of view

Conflict clauses and resolution

Consider the following example:

• Conflict clause:
$$c_5$$
: $(x_2 \lor \neg x_4 \lor x_{10})$

Decision Procedures An algorithmic point of view

Conflict clauses and resolution

Conflict clause: c_5 : $(x_2 \lor \neg x_4 \lor x_{10})$

$$c_1 = (\neg x_4 \lor x_2 \lor x_5)$$

$$c_2 = (\neg x_4 \lor x_{10} \lor x_6)$$

$$c_3 = (\neg x_5 \lor \neg x_6 \lor \neg x_7)$$

$$c_4 = (\neg x_6 \lor x_7)$$

$$\vdots \qquad \vdots$$

Resolution order: x_4, x_5, x_6, x_7 T1 = Res(c₄, c₃, x₇) = ($\neg x_5 \lor \neg x_6$)
T2 = Res(T1, c₂, x₆) = ($\neg x_4 \lor \neg x_5 \lor X_{10}$)
T3 = Res(T2, c₁, x₅) = ($x_2 \lor \neg x_4 \lor x_{10}$)

Finding the conflict clause:

Applied to our example:

nam	e <i>cl</i>	lit	var	ante
c_4	$(\neg x_6 \lor x_7)$	x_7	x_7	c_3
	$(\neg x_5 \lor \neg x_6)$	$\neg x_6$	x_6	c_2
	$(\neg x_4 \lor x_{10} \lor \cdot$	$\neg x_5) \neg x_5$	x_5	c_1
c_5	$(\neg x_4 \lor x_2 \lor x_2$	10)		

The Resolution-Graph keeps track of the "inference relation"

The resolution graph

What is it good for ? Example: for computing an **Unsatisfiable core**

[Picture Borrowed from Zhang, Malik SAT'03]

Decision Procedures An algorithmic point of view

Resolution graph: example

Decision heuristics - VSIDS

<u>VSIDS</u> (Variable State Independent Decaying Sum)

Each variable in each polarity has a counter initialized to 0.
 When a clause is added, the counters are updated.
 The unassigned variable with the highest counter is chosen.
 Periodically, all the counters are divided by a constant.

(Implemented in Chaff)

Decision heuristics – VSIDS (cont'd)

Chaff holds a list of unassigned variables sorted by the counter value.

Updates are needed only when adding conflict clauses.

Thus - decision is made in constant time.

Decision heuristics <u>VSIDS (cont'd)</u>

VSIDS is a 'quasi-static' strategy:

- *static* because it doesn't depend on current assignment

- *dynamic* because it gradually changes. Variables that appear in recent conflicts have higher priority.

This strategy is a *conflict-driven* decision strategy.

"..employing this strategy dramatically (i.e. an order of magnitude) improved performance ... "

Decision Heuristics - Berkmin

- Keep conflict clauses in a stack
- Choose the first unresolved clause in the stack

 If there is no such clause, use VSIDS
- Choose from this clause a variable + value according to some scoring (e.g. VSIDS)

This gives absolute priority to conflicts.

Berkmin heuristic

tailfirst conflict clause

End of SAT (for now)

Beginning of Binary Decision Diagrams

Decision Procedures An algorithmic point of view