# Logic in Automatic Verification 

Javier Esparza

Sofware Reliability and Security Group<br>Institute for Formal Methods in Computer Science University of Stuttgart

Many thanks to Abdelwaheb Ayari, David Basin, Armin Biere, Paul Gastin and Denis Oddoux

## Automatic verification

The dream:
feed a machine with a system and a specification
push a button
get 'yes' or 'no, because ...'

In this talk: three small examples of application of decision procedures for logics to this problem

SAT / QBF
Temporal logics
Monadic second order logics

## Verifying adders with boolean logic

## Modelling circuits with QBL

Gates as boolean formulas

Stable states as satisfying truth assignments




$$
\begin{array}{rlrl}
\operatorname{not}(a, b) & \equiv \neg a \leftrightarrow b & & \operatorname{and}(a, b, c) \\
\operatorname{or}(a, b, c) & \equiv(a \wedge b) \leftrightarrow c \\
\operatorname{or}(a \vee b) \leftrightarrow c & & \operatorname{xor}(a, b, c) & \equiv((\neg a \wedge b) \vee(a \wedge \neg b)) \leftrightarrow c
\end{array}
$$

Combine gates with $\wedge, \exists$ (and renaming of variables)


$$
R(x, y, q, r, s)=\exists w \cdot R_{1}(x, y, w, q) \wedge R_{2}(y, w, r, s)
$$

## A full adder


full $\operatorname{adder}(a, b, s$, cin, cout $) \equiv$

$$
\begin{aligned}
& \exists w_{1}, w_{2}, w_{3} \cdot \operatorname{xor}\left(a, b, w_{1}\right) \wedge \operatorname{xor}\left(w_{1}, \operatorname{cin}, s\right) \wedge \operatorname{and}\left(a, b, w_{2}\right) \wedge \\
& \quad \text { and }\left(\operatorname{cin}, w_{1}, w_{3}\right) \wedge \operatorname{or}\left(w_{3}, w_{2}, \operatorname{cout}\right)
\end{aligned}
$$

## An $n$-bit ripple-carry adder

$$
\begin{array}{lllll} 
& c_{2} & c_{1} & \operatorname{cin} & (=0) \\
& a_{2} & a_{1} & a_{0} & \\
+ & b_{2} & b_{1} & b_{0} & \\
\hline \text { cout } & s_{2} & s_{1} & s_{0} &
\end{array}
$$

Wire together $n$ 1-bit adders where $i$ th carry-out is $i+1$ st carry-in, first carry is the carry-in and last is the carry-out.


We obtain the formula

$$
\begin{gathered}
\operatorname{adder}_{n}\left(a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, s_{0}, \ldots, s_{n-1}, \text { cin, cout }\right) \equiv \\
\exists c_{0}, \ldots, c_{n} \cdot\left(c_{0} \leftrightarrow \operatorname{cin}\right) \wedge\left(c_{n} \leftrightarrow \text { cout }\right) \wedge \\
n-1 \\
\left.\bigwedge_{i=1}^{n} \text { full_adder }\left(a_{i}, b_{i}, s_{i}, c_{i}, c_{i+1}\right)\right)
\end{gathered}
$$

Problem: too slow!!
Each $c_{i}$ can only be computed after all of $c_{i-1}, \ldots, c_{0}$ have been computed
Delay: $2 n+2$ time units for $n$-bit numbers

## A carry-look-ahead n-adder

Compute all of $c_{n-1}, \ldots, c_{0}$ (and cout) concurrently
First step: given $a_{n-1} \ldots a_{0}$ and $b_{n-1} \ldots b_{0}$, identify the $i \in[0, n-1]$ that are

- Generating: $c_{i+1} \equiv 1$ independently of $c_{j}$. These are the positions such that $1=g_{i} \equiv$ and $\left(a_{i}, b_{i}\right)$.
- Propagating: $c_{i+1} \equiv c_{i}$, i.e., $c_{i}$ is 'propagated' to $c_{i+1}$. These are the positions such that $1=p_{i} \equiv \operatorname{xor}\left(a_{i}, b_{i}\right)$

Observe: all $g_{i}, p_{i}$ can be computed simultaneously
Second step: compute the $c_{i}$ 's by

$$
c_{i} \equiv g_{i} \vee\left(p_{i} \wedge g_{i-1}\right) \vee\left(p_{i} \wedge p_{i-1} \wedge g_{i-2}\right) \vee \ldots \vee\left(p_{i} \wedge p_{i-1} \wedge \ldots \wedge g_{0}\right)
$$

Logarithmic delay in $n$ using balanced $\vee$-trees and $\wedge$-trees
Delay depends on tree structure. For 64 bits: 23-56 units (instead of 130)

## Description of the circuit (for 4 bits)



## Description of the circuit II



LeafCell circuit

$\otimes$ circuit


RootCell circuit

## Verification of the carry-look-ahead $n$-adder

Check if

$$
\begin{gathered}
\operatorname{adder}_{n}\left(a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, s_{0}, \ldots, s_{n-1}, \text { cin, cout }\right) \\
\Leftrightarrow \\
\operatorname{cla}_{n}\left(a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, s_{0}, \ldots, s_{n-1}, \text { cin, cout }\right)
\end{gathered}
$$

Use SAT solvers or QBF solvers
Results of the SAT 2002 competition on a variant of this problem:

- Task was to compare $2,4,8, \ldots, 256$ bits adders ( 8 problems)
- From 26 variables and 70 3CNF clauses to 4584 variables and 13226 clauses
- Fastest solver (Zchaff) checked all 8 problems in 14 seconds
- More info at www.satlive.org/SATCompetition/2002/index.jsp

Rule-of-thumb: circuits with some hundreds of gates are routinely solved

Verifying mutual exclusion algorithms
with propositional temporal logics

## The mutual exclusion problem

The setting:
Two computers connected to a database (e.g., of plane bookings)
Can communicate with each other through shared variables (i.e., variables that both can read and write)

Both computers run a program having a critical section, from which the program can update the database records

The problem: design the program run by the computers so that
At any time, at most one computer can be in the critical section
If a computer wishes to enter the critical section, it eventually will These properties still hold if any of the computers breaks down in the non-critical section

Observe: not an input/output system!

## A solution due to Peterson

var flag[0], flag[1]: \{true, false\} init false;
var turn : $\{0,1\}$;
while true do
$s_{0}$ non-critical section
$s_{1}$ flag[0]:= true;
$s_{2}$ turn :=1;
$S_{3}$ while (flag[1] and turn=1) skip ;
$s_{4}$ critical section
$S_{5}$ flag[0]:= false;
od
while true do
$r_{0}$ non-critical section
$r_{1}$ flag[1]:= true;
$r_{2}$ turn :=0;
$r_{3}$ while (flag[0] and turn=0) skip ;
$r_{4}$ critical section
$r_{5}$ flag[1] := false;
od

## Linear-time temporal logic (LTL)

Built on top of a set $A P$ of atomic propositions

World: valuation of the atomic propositions over \{true, false $\}$

Formulas of LTL interpreted over runs: infinite sequences of worlds

Notation: $\quad$ run $\rho=\rho_{0} \rho_{1} \rho_{2} \ldots$

$$
\left.\operatorname{suffix} \rho\right|_{i}=\rho_{i} \rho_{i+1} \rho_{i+2} \cdots
$$

| Type | Formula | $\rho \models \varphi$ iff $\ldots$ | Intuition |
| :--- | :--- | :--- | :--- |
| atomic | $p$ | $p$ is true at $\rho_{0}$ | $p$ holds now |
| boolean | $\neg \varphi$ | $\rho \not \equiv \varphi$ |  |
|  | $\varphi \vee \psi$ | $\rho \models \varphi$ or $\rho=\psi$ |  |
| temporal | $\mathbf{X} \varphi$ | $\left.\rho\right\|_{1} \models \varphi$ |  |
|  | $\mathbf{F} \varphi$ | $\left.\rho\right\|_{i} \models \varphi$ for some $i \in \mathbb{N}$ | eventually $\varphi$ |
|  | $\mathbf{G} \varphi$ | $\left.\rho\right\|_{i} \models \varphi$ for all $i \in \mathbb{N}$ | always $\varphi$ |
|  | $\varphi \mathbf{U} \psi$ | there is $i \in \mathbb{N}$ such that $\left.\rho\right\|_{i} \models \psi$ |  |
|  |  | and $\left.\rho\right\|_{j} \models \varphi$ for all $0 \leq j<i$ | $\varphi$ until $\psi$ |

## Application to the mutex algorithm

Atomic propositions: flag[0]=true, at $s_{4}, \ldots$
The program satisfies a property if all its runs (executions) satisfy it

The mutual exclusion property:

$$
\mathrm{G}\left(\neg \mathrm{at} s_{4} \vee \neg \mathrm{at} r_{4}\right)
$$

If computer 0 wants to enter the critical section, it eventually will:

$$
\mathrm{G}\left(\mathrm{flag}[0]=\text { true } \Rightarrow \mathrm{F} \text { at } s_{4}\right)
$$

But this property does not take breakdowns out of the non-critical section into account...

## Dealing with breakdowns

Introduce propositions last_0, last_1 saying which computer did the last step
No breakdowns for computer 0 :

> G F last_0

No breakdowns for computer 0 but possibly in the non-critical section:

$$
\text { G F last } 0 \vee \text { F G at } s_{0}
$$

The final property to be checked:

$$
\left.\begin{array}{c}
\left(\mathrm{G} \text { F last } 0 \vee \mathrm{~F} \mathbf{G} \text { at } s_{0}\right) \\
\Longrightarrow\left(\mathrm{G} \text { F last } 1 \vee \mathrm{~F} \text { G at } r_{0}\right) \\
\mathrm{G}\left(\text { flag }[0]=\text { true } \Rightarrow \mathbf{F} \text { at } r_{4}\right)
\end{array}\right) \mathrm{G}\left(\text { flag }[1]=\text { true } \Rightarrow \mathbf{F} \text { at } s_{4}\right) .
$$

## Automatic verification

The model-checking problem: whether all runs of the algorithm satisfy a given LTL formula

Can be algorithmically solved in three steps (Vardi, Wolper 85):

Construct a Büchi automaton for the negation of the formula (decision procedure for satisfiability)

Construct the product of this automaton and the state space of the system Check emptyness of the product

Linear complexity in the number of states of the program, exponential complexity in the size of the formula

Formula verified in less than one second with Holzmann's SPIN checker (http://spinroot.com/)

## Automaton for the formula

LTL2BA by Gastin and Oddoux (www.liafa.jussieu.fr/ oddoux/tl2ba/)


Quite sophisticated: formula $\rightarrow$ alternating Büchi $\rightarrow$ generalized Büchi $\rightarrow$ Büchi, with simplification heuristics at each step

The automaton for the negation of the formula has 36 states

## Verifying parameterized adders

with monadic second order logics

## WS1S : weak MSO logic of one successor

First order variables $p, q, \ldots$ interpreted over $\mathbb{N}$

Second-order variables $X, Y, \ldots$ interpreted over finite subsets of $\mathbb{N}$

$$
\phi::=\mathbf{s}(q)|X(p)| \neg \phi|\phi \vee \phi| \exists p . \phi \mid \exists X . \phi
$$

## Definitions (Sample)

$$
\begin{array}{ll}
\phi_{1} \wedge \phi_{2} & \equiv \neg\left(\neg \phi_{1} \vee \neg \phi_{2}\right) \\
\forall p . \phi & \equiv \neg \exists p \cdot \neg \phi \\
X(0) & \equiv \exists p \cdot(\forall q \cdot p \neq \mathbf{s}(q)) \wedge X(p) \\
x=y & \equiv \forall X \cdot X(x) \leftrightarrow X(y) \\
X(p+n) & \equiv \exists p_{1}, \ldots, p_{n} \cdot p_{1}=\mathbf{s}(p) \wedge \ldots \wedge p_{n}=\mathbf{s}\left(p_{n-1}\right) \wedge X\left(p_{n}\right) \\
x \leq y & \equiv \forall X \cdot(X(y) \wedge \forall z, w \cdot(X(z) \wedge s(w)=z \rightarrow X(w)) \rightarrow X(x)) \\
x<y & \equiv x \leq y \wedge \neg(x=y)
\end{array}
$$

## WS1S as a logic of binary strings

Second-order variables interpreted as strings over $\{0,1\}$
First-order variables interpreted as positions in the string
' $X(p)$ holds iff string $X$ has a 1 at position $p$ '
Formula $\phi$ with free variables determines a language $\mathcal{L}(\phi)$

$$
1101 \in \mathcal{L}(X(1) \wedge X(3)) \quad 1011 \notin \mathcal{L}(X(1) \wedge X(3))
$$

$n$ free variables in $\phi$ determine language over $\{0,1\}^{n}$

$$
\begin{aligned}
& \forall p . p<4 \rightarrow(X(p) \leftrightarrow \neg Y(p))
\end{aligned}
$$

## Examples

$\exists p, q \cdot p \neq q \wedge X(p) \wedge X(q)$
$-X$ is a string with a 1 in at least 2 positions, e.g., 010100
$\exists p .(\forall q \cdot p \neq \mathbf{s}(q)) \wedge X(p)$
$-X$ is a string whose initial letter is 1
$\forall p . X(p) \leftrightarrow Y(\mathbf{s}(p))$

$-Y$ is $X$ 'right-shifted' 1 position, e.g., | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 |

## Well-known results

Satisfiability of WS1S is decidable in non-elementary time (each quantifier alternation adds one exponential)

The language $\mathcal{L}(\phi)$ is regular
A finite automaton accepting $\mathcal{L}(\phi)$ can be computed directly from $\phi$

## Modelling the family of ALL ripple-carry adders

Recall the formula for a ripple carry $n$-adder

$$
\begin{gathered}
\operatorname{adder}_{n}\left(a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, s_{0}, \ldots, s_{n-1}, \text { cin }, \text { cout }\right) \equiv \\
\exists c_{0}, \ldots, c_{n} \cdot\left(c_{0} \leftrightarrow \operatorname{cin}\right) \wedge\left(c_{n} \leftrightarrow \text { cout }\right) \wedge \\
n-1 \\
\bigwedge_{i=0} \text { full_adder }\left(a_{i}, b_{i}, s_{i}, c_{i}, c_{i+1}\right)
\end{gathered}
$$

We construct the WS1S formula
$\operatorname{adder}(n, A, B, S$, cin, cout $) \equiv$

$$
\begin{aligned}
\exists C . & (C(0) \leftrightarrow \text { cin }) \wedge(C(n) \leftrightarrow \text { cout }) \wedge \\
& \forall p . p<n \rightarrow \text { full adder }(A(p), B(p), S(p), C(p), C(p+1)) \wedge \\
\quad & \forall p . p \geq n \rightarrow(\neg A(p) \wedge \neg B(p) \wedge \neg S(p))
\end{aligned}
$$

## A model of $\operatorname{adder}(A, B, S$, cin, cout $)$



The set of models of adder is 'the union' of all the sets of models of adder ${ }_{n}$

## WS2S : weak MSO logic of two successors

Seen as a logic over binary trees

Second-order variables interpreted as trees over $\{0,1\}$

First-order variables interpreted as positions (nodes) in the tree

## Example:

$$
X(\epsilon) \wedge\left(\forall p . X\left(\mathbf{s}_{0}(p)\right) \leftrightarrow X\left(\mathbf{s}_{1}(p)\right)\right) \wedge \forall p . \neg Y\left(\mathbf{s}_{0}(p)\right) \vee \neg Y\left(\mathbf{s}_{1}(p)\right)
$$

' $X$ contains the root node $\epsilon$, and
a node $p$ is in $X$ iff its brother is also in $X$, and for any node $p, Y$ contains at most one of $p$ 's successors'

## Models

A model of a formula with $n$ free variables is a 'superposition' of trees over $\mathcal{B}$, i.e., a tree whose nodes are labelled with elements of $\{0,1\}^{n}$

The tree

is a model of

$$
X(\epsilon) \wedge\left(\forall p . X\left(\mathbf{s}_{0}(p)\right) \leftrightarrow X\left(\mathbf{s}_{1}(p)\right)\right) \wedge \forall p . \neg Y\left(\mathbf{s}_{0}(p)\right) \vee \neg Y\left(\mathbf{s}_{1}(p)\right)
$$

Modelling the family of ALL carry-look-ahead adders


The family can be modelled by the formula
$\operatorname{cla}(A, B, S$, cin, cout $) \equiv \exists T, E_{1}, E_{2}, F_{1}, F_{2}$
$\operatorname{Root} \operatorname{Cell}\left(F_{1}, F_{2}, E_{1}, E_{2}\right.$, cin, cout $) \wedge$
$\left(\forall p .\left(\operatorname{leaf}(p, T) \rightarrow \operatorname{LeafCell}\left(A, B, S, F_{1}, F_{2}, E_{1}, E_{2}, p\right)\right) \wedge\right.$ $\left.\left(\operatorname{node}(p, T) \rightarrow \operatorname{NodeCell}\left(F_{1}, F_{2}, E_{1}, E_{2}, p\right)\right)\right) \wedge$
shape_cond $(A, B, S, T)$

## Verification of a parameterized cla-adder

Check validity of
$\forall A, B, S$, cin, cout. $\operatorname{adder}(A, B, S$, cin, cout $) \Leftrightarrow \boldsymbol{c l a}(A, B, S$, cin, cout $)$
(Requires to embed WS1S into WS2S)
Checked in 1 second by MONA (Mona at www.brics.dk/ mona)

Restrictions:

- only array or tree structures
- only one parameter (two parameters $\rightarrow$ quantification on binary relations)


## Conclusions

## Conclusions

No conclusions, just examples!

