
Model Checking

(Summer 2020)

Jan Kretinsky

Chair for Foundations of Software Reliability and Theoretical Computer Science
Technical University of Munich

Organization

Language: English

Online course: streaming and participation over Big Blue Button
https://bbb.in.tum.de/jan-fm9-czz

Lecture: Mo, Tu 10:00–11:30
Lecturer: Jan Kretinsky, jan.kretinsky@in.tum.de
Office hours: by appointment

Tutorials: Th 14:00–15:30
Tutors: Kush Grover, Pranav Ashok, Tobias Meggendorfer

Misc: 4V+2Ü
Exam: August 12
(please do take part in the exercises to prepare)

Web site: slides, exercises, announcements
http://www7.in.tum.de/um/courses/mc/ss2020/

2

Other

Preliminaries:

basic knowledge of logics, discrete structures, graph theory, . . .

Literature:

Baier, Katoen: Principles of Model Checking, MIT Press, 2008

Clarke, Grumberg, Peled: Model Checking, MIT Press, 1999

Clarke, Henzinger, Veith, Bloem: Handbook of model Checking, Springer,
2018

Emerson: Temporal and Modal Logic, chapter 16 in Handbook of Theoretical
Computer Science, vol. B, Elsevier, 1991

Vardi: An Automata-Theoretic Approach to Linear Temporal Logic, LNCS
1043, 1996

Holzmann: The SPIN Model Checker, Addison-Wesley, 2003

3

Part 1: Introduction

4

What does “Model Checking” mean?

E.g. model checking CSL

Begriff aus der Logik

temporale Logik: Erweiterung der Aussagenlogik

5

What does “Model Checking” mean?

E.g. model checking CSL

6

What does “Model Checking” mean?

A technical term from logic

temporal logic: extension of predicate logic

in German: “Modellprüfung” (rarely used)

7

Motivation

Computer systems permeate more and more areas of our lives:

PCs, mobile phone, GPS, ...

control systems in cars, planes, ...

in banks (ATMs, credit risk assessment)

Correspondingly, we require more and more dependable hardware and software
systems;

but the more complex a system grows, the more difficult it becomes to protect it
against mistakes or attacks.

Bugs can have substantial economic impact or even endanger lives.
Estimated cost of bugs in the US: 60 bn dollars per year (Source: Der Spiegel).

8

Pentium bug (1994)

The Pentium CPU computed wrong results for certain floating point operations,
e.g.

4195835− (4195835/3145727)× 3145727 = 256

Cause: for efficiency reasons, the division operation used a table with 1066
pre-computed entries of which five were wrong.

Estimated cost for exchanging the CPUs: 500 million dollars

9

Ariane 5 crash (1996)

Ariane 5 began to disintegrate 39 seconds after launch because of
aerodynamic loads resulting from an angle of attack of more than 20 degrees.

10

Cause of the Ariane crash

The angle of attack was caused by incorrect altitude data following a software
exception.

The software exception was raised by an overflow in the conversion of a 64-bit
floating-point number to a 16-bit signed integer value. The result was an operand
error.

The operand error occurred because of an unexpected high value of the
horizontal velocity sensed by the platform. The value was much higher than
expected because the early part of the trajectory of Ariane 5 differs from that of
Ariane 4 and results in higher horizontal velocity values.

Direct cost 500.000.000 EUR, indirect cost 2.000.000.000 EUR

11

Loss of Mars Climate Orbiter (1999)

Cause: unchecked type mismatch of metric and imperial units.

12

Power shutdown on USS Yorktown (1998)

Cause: A sailor mistakenly typed 0 in a field of the kitchen inventory application.
Subsequent divison by this field cause an arithmetic exception, which
propagated through the system, crashed all LAN consoles and remote terminal
units, and led to power shutdown for about 3 hours.

13

Unintended acceleration of Toyota cars (2009-2014)

Electronic Throttle Control System (ETCS) suspected .

NASA team investigated it in 2010-11, results inconclusive.

Further investigation in 2012-13 found unprotected critical variables, stack
overflows, memory corruption.

Jury found that ETCS detects caused a death, experts testified ETCS is unsafe.

Toyota fined 1.2 billion dollars for concealing safety defects in 2014, although not
directly for software bugs.

14

Apple’s SSL bug (2014)

Security check not performed due to a simple code error

...
if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;
...
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail; /* MISTAKE! THIS LINE SHOULD NOT BE HERE */

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(...);
...

(see also Heartbleed ...)

15

Approaches to solving the problem

Avoid bugs:

Appropriate programming languages

Software engineering methods

Detect bugs:

Simulation, testing

Prove their absence:

Deductive methods (Hoare)

Program analysis

Detect bugs and prove their absence:

Model checking

16

Simulation and testing

Can be used to find bugs in the design phase (simulation) or in the final product
(testing).

Methods: Blackbox/whitebox testing, coverage metrics, etc.

Advantage: can find (obvious) bugs quickly and cost-efficiently

Disadvantage: incompleteness

No coverage metric guarantees the absence of bugs, even at 100%, nor gives any estimate
of the number of remaining bugs.

Achieving complete coverage becomes more difficult with growing complexity.

Concurrent systems very difficult to test.

17

Program analysis

Analyzes an overapproximation of the program

Symbolic execution on an abstract domain (like intervals)

Advantages:

Can prove absence of standard bugs (e.g. division by 0, array out of bounds).

Often quite efficient, applicable to large systems.

Disadvantages:

Incompleteness, can produce large number of false alarms.

Analyzes standard errors, not very specification oriented.

18

Deductive verification

Proofs using formal program semantics (Dijkstra, Hoare et al.)

Example: Hoare logic:

{P} S {Q}

Meaning: Whenever P holds before the execution of S, then Q holds afterwards.

Proof rules, e.g.

{P} skip {P} {P[x/e]} x := e {P}
{P} S1 {Q} ∧ {Q} S2 {R}

{P} S1; S2 {R}

19

Example: proof rule for loops

{P} while β do C {Q}

Show that there exists an invariant I with the following properties:

P ⇒ I {I ∧ β} C {I} I ∧ ¬β ⇒ Q

Termination: find a function f(x , y , . . .) of the program variables such that

{β ∧ f(x , y , . . .) = k} C {f(x , y , . . .) < k} f(x , y , . . .) ≤ 0⇒ ¬β

The program C is deemed correct if {true} C {P} holds, where P is the function
of interest.

20

Advantages and disadvantages

Advantages:

Complete; its power is limited only by the (human) prover.

Disadvantages:

see above

Onerous proofs “by hand” (help from theorem provers).

Very difficult for concurrent systems.

21

Summary

Simulation and testing can detect bugs but not prove their absence.
(They consider a subset of the possible executions.)

Deductive methods and program analysis can prove the absence of bugs, but
can yield false positive.
(They consider a superset of the possible executions).

Model checking considers all and only the possible executions of a system

→ detection of bugs and proof of their absence is both possible (in principle).
→ computationaly costly (but can be merged with program analysis)
→ particularly attractive for concurrent systems

22

Reactive systems

Examples: operating system, server, ATM, telephone switching system, . . .

Concurrent systems; no “function” is being computed, termination usually
undesirable.

We are interested in certain properties of their executions, e.g.

No deadlocks.

No two processes can be in some “critical section” concurrently.

Whenever a process wants to enter a critical section it will eventually be able
to do so.

All requests are eventually served.

⇒ formalization using temporal logics

23

Propositional logic (Syntax)

Formulae of propositional logic consist of atomic propositions, e.g.

A =̂ “Anna is an architect”

B =̂ “Bruno is a bear”

and connectives, e.g. ∧ (“and”), ∨ (“or”), ¬ (“not”),→ (“implies”).

24

Examples

Example formulae of propositional logic:

A ∧ B (“Anna is an architect and Bruno is a bear”)

¬B (“Bruno is not a bear”)

Are such formulae true?

Answer: It depends.

Some formulae are always true (A ∨ ¬A) or always false (B ∧ ¬B).

But in general, formulae are evaluated w.r.t. some valuation (or: “world”).

25

Semantics of propositional logic

A valuation B is a function assigning a truth value (1 or 0) to each atomic
proposition.

The semantics of a formula (defined inductively) is the set of valuations making
the formula “true” and denoted [[F]]. E.g.,

if F = A then [[F]] = {B | B(A) = 1 };

if F = F1 ∧ F2 then [[F]] = [[F1]] ∩ [[F2]]; . . .

Other notations: B |= F iff B ∈ [[F]].
We say: “B fulfils F ” or “B is a model of F ”.

26

The model-checking problem in propositional logic

Problem: Given a valuation B and a formula F of propositional logic;
check whether B is a model of F .

Solution:

Replace the atomic propositions by their truth values in B, then use a truth
table to evaluate to 1 or 0.

Examples: Let B1(A) = 1 and B1(B) = 0. Then B1 6|= A ∧ B and B1 |= ¬B.

Let B2(A) = 1 and B2(B) = 1. Then B2 |= A ∧ B and B2 6|= ¬B.

27

Temporal logic

Takes into account that truth values of atomic proposition may change with time
(the “world” transforms).

Example: Truth values of A in the course of Anna’s life:

birth working life

study retirement

Possible statements:

Anna will eventually be an architect (at some point in the future).

Anna is an architect until she retires.

=⇒ Extension of propositional logic with temporal connectives (eventually, until)

28

Preview

Linear-time temporal logics (example: LTL)

formulae with temporal operators

evaluated w.r.t. (infinite) sequences of valuations

Model-checking problem for LTL: Given an LTL formula and a sequence of
valuations, check whether the sequence is a model of the formula.

Computation-tree logic (CTL, CTL∗)

Considers (infinite) trees of valuations.

Interpretation: non-determinism; multiple possible developments.

29

Connection with program verification

State space of a program:

value of program counter

contents of variables

contents of stack, heap, . . .

Possible atomic propositions:

“Variable x has a positive value.”

“The program counter is at label `.”

Given a set of atomic propositions, each program state gives rise to a valuation!

30

Programs and temporal logics

Linear-time temporal logic:

Each program execution yields a sequence of valuations.

Interpretation of the program: the set of possible sequences

Question of interest: Do all sequences satisfy a given LTL formula?

Computation-tree logic:

The program may branch at certain points, its possible executions yield a tree
of valuations.

Interpretation of the program: tree with the (valuation of the) initial state as its
root

Question of interest: Does this tree satisfy a given CTL formula?

Thus: verification problem =̂ model-checking problem

31

Model checking

Apart from its definition in terms of logic, the term model checking is generally
understood to mean methods that

verify whether a given system satisfies a given specification;

work automatically;

either prove correctness of the system w.r.t. to the specification;

or exhibit a counterexample, i.e. an execution violating the specification (at
least in the linear-time framework).

32

Pros and cons of model checking

Advantages:

works automatically(!)

suitable for reactive, concurrent, distributed systems

can check temporal-logic properties, not just reachability

Disadvantages:

Programs are generally Turing-powerful→ undecidability

Approach: concentrate on decidable subclasses, here: finite automata;
interesting connections to automata theory!

State space often very large→ computationally expensive

approach: efficient algorithms and data structures

33

Problems with model checking

For the aforementioned problems we cannot hope to verify arbitrary properties of
arbitrary programs!

Possibly we must consider a simplified mathematical model of the system of
interest that ignores its “unimportant” aspects.

Construction of such models and the specification as well as the actual
verification require effort and (possibly high) cost.

⇒ useful in early design phases

⇒ economic gain for critical systems where failure is costly (CPUs,
communication protocols, aircraft, . . .)

34

Success stories of model checking

Since end of the 1970s: research on theoretical foundations

Since the 1990s: industrial applications

First hardware verification, later software verification:

verification of the cache protocol in the IEEE Futurebus+ (1992)

The tool SMV was able to find several bugs after four years of trying to validate the

protocol with other means.

verification of the floating-point unit of the Pentium4 (2001)

Static Driver Verifier (Microsoft, 2000–2004) (Windows device drivers)

Research groups in big companies: IBM, Intel, Microsoft, OneSpin Solutions, ...

Turing award 2007 for its “inventors”: Clarke, Emerson, Sifakis

35

Goal of this course

The course teaches the fundamentals of model checking, its theory and
applications, especially modelling systems, formulating specifications, and
verifying them.

Modelling: transition systems, Kripke structures; tools: Spin, SMV

Specification: temporal logics (LTL, CTL)

Verification: fundamental techniques and extensions (partial-order reduction,
BDDs, abstraction, bounded model checking)

36

Part 2: Kripke structures

37

System model

We shall use a very generic (and unspecific) model, i.e. transition systems,
essentially directed graphs:

T = (S,→, r)

S =̂ state space; states that the system may attain
(finite or infinite set)

→ ⊆ S × S =̂ transition relation; describes which actions
or “steps” are possible

r ∈ S =̂ initial state (“root”)

38

Example 1: Producer/Consumer

(Pseudocode) program with variables and concurrency:

var turn {0,1} init 0;
cobegin {P ‖ K} coend

P = start;
while true do

w0: wait (turn = 0);
p0: /* produce */

turn := 1;
od;
end

K = start;
while true do

w1: wait (turn = 1);
c1: /* consume */

turn := 0;
od;
end

39

Example 1: Corresponding transition system

S = {w0, p0} × {w1, c1} × {0,1}; initial state (w0,w1,0)

w0,w1,0

p0,w1,0

p0,w1,1

w0,c1,0

p0,c1,0

w0,c1,1

p0,c1,1

w0,w1,1

40

Example 2: Recursive Program

procedure p;
p0: if ? then
p1: call s;
p2: if ? then call p; end if;

else
p3: call p;

end if
p4: return

procedure s;
s0: if ? then return; end if;
s1: call p;
s2: return;

procedure main;
m0: call s;
m1: return;

S = {p0, . . . , p4, s0, . . . , s2,m0,m1}∗, initial state m0

m0 s0 m1
s1 m1

m1 ε

p0 s2 m1

p3 s2 m1

p1 s2 m1

p0 p4 s2 m1

s0 p2 s2 m1

...

...

41

Example 3: Petri net

State space = set of markings

��
��

��
��

��
��

��
��

��
��

p1 p3 p5

p2 p4

t1 t3

t2

v

v

- - - -

- -

& $
?

�
�
�
�
���

�
�
�
�
���

t1

t1

@
@
@
@
@@I

@
@
@
@
@@I

t2

t2
�
�
�
�
���

t3

→ 〈1,1,0,0,0〉

〈1,0,0,1,0〉 〈0,1,1,0,0〉

〈0,0,1,1,0〉 〈0,0,0,0,1〉

42

Implicitly given transition systems

Quite often, a transition system is given to us “implicitly”, i.e. in the form of a
program, from which we extract the transition system.

In such a setting, we are given an initial state and a function for computing the
direct successor states of a given state, such that transitions are computed only
on demand.

Some of our analysis methods will be suitable for such a setting.

43

Notation for transition systems

We write s → t if (s, t) ∈ →.

If s → t then s is called a direct predecessor of t and t a direct successor of s.

S∗ denotes the finite, Sω the infinite sequences (words) over S.

w = s0 . . . sn is a path of length n if si → si+1 for all 0 ≤ i < n.

ρ = s0s1 . . . is an infinite path if si → si+1 for all i ≥ 0.

44

Notation for transition systems II

ρ(i) denotes the i-th element of ρ and ρi the suffix starting at ρ(i).

s →∗ t if there is a path from s to t .

s →+ t if there is a path from s to t with at least one transition.

If s →∗ t then s is a predecessor of t and t a successor of s.

45

Example

s0 s1 s2

S = {s0, s1, s2}; initial state s0

s0 → s0 s0 → s1 s1 → s2 s2 → s2

s0s1s2 is a path of length 2, i.e. s0 →∗ s2 and s0 →+ s2

s1 →∗ s1 but s1 6→+ s1

ρ = s0s0s1s2s2s2 . . . is an infinite path.

ρ(2) = s1 ρ1 = s0s1s2s2s2 . . .

46

Finite and infinite transition systems

In principle, a transition system many have infinitely many states. Some of the
possible reasons are:

Data: integers, reals, lists, trees, pointer structures, . . .

Control: (recursive) procedures, dynamic thread creation, . . .

Communication: unbounded FIFO channels, . . .

Unknown parameters: number of participants in a protocol, . . .

Real time: discrete or continuous time

Some (not all!) of these features lead to Turing-powerful computation models
(and thus undecidable verification problems).

47

Example: Recursive program
procedure p;
p0: if ? then
p1: call s;
p2: if ? then call p; end if;

else
p3: call p;

end if
p4: return

procedure s;
s0: if ? then return; end if;
s1: call p;
s2: return;

procedure main;
m0: call s;
m1: return;

The state space of this example is infinite (stack!), however, LTL and CTL model
checking remain decidable.

m0 s0 m1
s1 m1

m1 ε

p0 s2 m1

p3 s2 m1

p1 s2 m1

p0 p4 s2 m1

s0 p2 s2 m1

...

...

48

Example: Petri net

Petri nets may have an infinite state space, too:

p1 p2t

Reachable states are: 〈1,0〉, 〈1,1〉, 〈1,2〉, . . .

Reachability and LTL decidable, CTL undecidable.

49

Finite state spaces

For now, we restrict ourselves to finite state spaces.

Finite systems: e.g. hardware systems, programs with finite data typs (Boolean
programs), certain communication protocols, . . .

Finite systems may also be obtained by abstracting an infinite system.

Remaining problem: state-space explosion, systems may be finite but VERY
large.

50

Reasons for state-space explosion (1)

A common reason is concurrency.

Example: Consider the following Petri net:

p1

p6

t1 t2 t3

p2 p4

p3 p5

51

The reachability graph has got 8 = 23 states and 6 = 3! paths.

{p1,p4,p5}

{p2,p3,p6}{p2,p4,p5}

{p2,p3,p5}

{p2,p4,p6}

{p1,p3,p5}

{p1,p3,p6}

{p1,p4,p6}

t1

t1

t2

t2

t2

t2

t3

t3

t3

t1 t3 t1

With n components we have 2n states and n! paths.

52

Reasons for state-space explosion (2)

A second common reason is data.

e.g. programs with a few large or many small variables

size of state space: 2 to the number of bits

Counteractions:

Abstraction: ignore “unimportant” data

Compression: work with sets of states; efficient data structures for storing
and manipulating sets

Approximation: find over- or underapproximations of the reachable states

We will see some examples of these techniques during the course.

53

Kripke structures

Idea: Extract from each state a valuation.

K = (S,→, r ,AP, ν)

(S,→, r) =̂ underlying transition system

AP =̂ set of atomic propositions

ν : S → 2AP =̂ Interpretation of atomic propositions (“valuation”)

Remarks:

2AP denotes the powerset of AP.

Valuations are represented here as subsets of AP rather than functions; the
propositions contained in the set are those that are deemed true.

54

Example of a Kripke structure

Transition system (S,→, r) as in Example 1.

Suppose we are interested in the acts of production and consumption.

Let AP = {prod , cons};

ν−1(prod) = {p0} × {w1, c1} × {0,1};

ν−1(cons) = {w0, p0} × {c1} × {0,1}.

55

The valuations in Example 1:

{}

{prod}

{prod}

{cons}

{prod,cons}

{cons}{}

{prod,cons}

56

Sequences and trees of valuations

In linear-time logic we consider the possible valuation sequences:

z.B. ∅ ∅ {prod} ∅ {cons} . . . oder ∅ {prod} {prod} {prod} . . .

In computation-tree logic we consider the “tree-wise unfolding” of the Kripke
structure:

{prod}

{}

{cons}

...

...

{}

{}

{prod}

... ...

... ...

57

Examples of temporal-logic properties

“It is never possible that prod and cons hold at the same time.”

Intuitively, this property holds because no state in which both prod and
cons holds is reachable from the beginning, which can be verified by
inspecting the sequences and trees.

A property of this form is also called an invariant.

“Whenever something is produced it may be consumed afterwards.”

We may take the view that this property does not hold because of the
following sequence: ∅ {prod} ∅ ∅ ∅ . . . Thus, something is produced but
followed by an infinite loop.

A property of this form is also called a reactivity property.

58

Fairness

We may also take the view that the second property merely fails because of
overly simplistic modelling:

In the counterexample, only one process is acting, making “empty” steps, while
the second process does not do anything.

Such a behaviour is usually unrealistic in concurrent systems; even if one
process may be faster than another and execute multiple steps, a “fair” scheduler
will eventually grant execution time to either process.

We may therefore wish to exclude such unrealistic (“unfair”) executions and only
consider “fair” ones. In other words, we work under certain “fairness
assumptions”.

Under a reasonable fairness assumption, the second property holds.

59

Part 3: Linear-time logic

60

Preliminaries

Linear-time logic in general:

any logic working with sequences of valuations

model: time progresses in discrete steps and in linear fashion, each point in
time has exactly one possible future

origins in philosophy/logic

Most prominent species: LTL

in use for verification since end of the 1970s

specification of correctness properties

61

Recap

Let AP be a set of atomic propositions.

2AP denotes the powerset of AP, i.e. its set of subsets.

(2AP)ω denotes the set of (infinite) sequences of valuations (of AP).

62

Syntax of LTL

Let AP be a set of atomic propositions. The set of LTL formulae over AP is
inductively defined as follows:

If p ∈ AP then p is a formula.

If φ1, φ2 are formulae then so are

¬φ1, φ1 ∨ φ2, Xφ1, φ1 U φ2

Intuitive meaning: X =̂ “next”, U =̂ “until”.

63

Remarks

This is a minimal syntax that we will use for proofs etc.

For added expressiveness, we will later define some abbreviations based on the
minimal syntax.

Comparision of propositional logic (PL) and LTL:

PL LTL

Syntax atomic proposition, logic operators + temporal operators

Evaluated on. . . valuations sequences of valuations

Semantics set of valuations set of valuation sequences

64

Semantics of LTL

Let φ be an LTL formula and σ a valuation sequence.
We write σ |= φ for “σ satisfies φ.”

σ |= p if p ∈ AP and p ∈ σ(0)

σ |= ¬φ if σ 6|= φ

σ |= φ1 ∨ φ2 if σ |= φ1 or σ |= φ2

σ |= Xφ if σ1 |= φ

σ |= φ1 U φ2 if ∃i :
(
σi |= φ2 ∧ ∀k < i : σk |= φ1

)

Semantics of φ: [[φ]] = {σ | σ |= φ }

65

Examples

Let AP = {p, q, r}. Find out whether the sequence

σ = {p} {q} {p}ω

satisfies the following formulae:

p

q

X q

X¬p

p U q

q U p

(p ∨ q) U r

66

Extended syntax

We will commonly use the following abbreviations:

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) Fφ ≡ true U φ

φ1 → φ2 ≡ ¬φ1 ∨ φ2 Gφ ≡ ¬F¬φ
true ≡ p ∨ ¬p φ1 W φ2 ≡ (φ1 U φ2) ∨Gφ1

false ≡ ¬true φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2)

Meaning: F =̂ “finally” (eventually), G =̂ “globally” (always),
W =̂ “weak until”, R =̂ “release”.

67

Some example formulae

Invariant: G¬(cs1 ∧ cs2)

cs1 and cs2 are never true at the same time.

Remark: This particular form of invariant is also called mutex property (“mutual
exclusion”).

Safety: (¬p) W q

p does not occur before q has happend.

Remark: It may happen that q never happens in which case p also never
happens.

68

More examples

Liveness:

GF p

p occurs infinitely often.

FG p

At some point p will continue to hold forever.

G(try1 → F cs1)

For mutex algorithms: Whenever process 1 tries to enter its critical section it
will eventually succeed.

Conjunction of safety and liveness: (¬p) U q

p does not occur before q and q eventually happens.

69

Tautology, equivalence

Certain concepts from propositional logic can be transferred to LTL.

Tautology: A formula φ with [[φ]] = (2AP)ω is called tautology.

Unsatisfiability: A formula φ with [[φ]] = ∅ is called unsatisfiable.

Equivalence: Two formulae φ1, φ2 are called equivalent iff [[φ1]] = [[φ2]].
Denotation: φ1 ≡ φ2

70

Equivalences: relations between operators

X(φ1 ∨ φ2) ≡ Xφ1 ∨ Xφ2

X(φ1 ∧ φ2) ≡ Xφ1 ∧ Xφ2

X¬φ ≡ ¬Xφ

F(φ1 ∨ φ2) ≡ Fφ1 ∨ Fφ2

¬Fφ ≡ G¬φ

G(φ1 ∧ φ2) ≡ Gφ1 ∧ Gφ2

¬Gφ ≡ F¬φ

(φ1 ∧ φ2) U ψ ≡ (φ1 U ψ) ∧ (φ2 U ψ)

φU (ψ1 ∨ ψ2) ≡ (φU ψ1) ∨ (φ1 U ψ2)

71

Equivalences: idempotence and recursion laws

Fφ ≡ FFφ

Gφ ≡ GGφ

φU ψ ≡ φU (φU ψ)

Fφ ≡ φ ∨XFφ

Gφ ≡ φ ∧XGφ

φU ψ ≡ ψ ∨ (φ ∧X(φU ψ))

φW ψ ≡ ψ ∨ (φ ∧X(φW ψ))

72

Interpretation of LTL on Kripke structures

Let K = (S,→, r ,AP, ν) be a Kripke structure.
We are interested in the valuation sequences generated by K.

Let ρ in Sω be an infinite path of K.

We assign to ρ an “image” ν(ρ) in (2AP)ω; for all i ≥ 0 let

ν(ρ)(i) = ν(ρ(i))

i.e. ν(ρ) is the corresponding valuation sequence.

Let [[K]] denote the set of all such sequences:

[[K]] = { ν(ρ) | ρ is an infinite path of K}

73

The LTL model-checking problem

Problem: Given a Kripke structure K = (S,→, r ,AP, ν) and an LTL formula φ
over AP, does [[K]] ⊆ [[φ]] hold?

Definition: If [[K]] ⊆ [[φ]] then we write K |= φ.

Interpretation: Every execution of K must satisfy φ for K |= φ to hold.

Remark: We may have K 6|= φ and K 6|= ¬φ!

74

Example

Consider the following Kripke structure K with AP = {p}:

s0

{ }{p}

s1 s2

{p}

There are two classes of infinite paths in K:

(i) Either the system stays in s0 forever,

(ii) or it eventually reaches s2 via s1 and remains there.

We have:

K |= FG p because all runs eventually end in a state satisfying p.

K 6|= G p because executions of type (ii) contain a non-p state.

75

Dealing with deadlocks

The definition of the model-checking problem only considers the infinite
sequences!

Thus, executions reaching a deadlock (i.e. a state without any successor) will be
ignored, with possibly unforeseen consequences:

Suppose K contains an error, so that every execution reaches a deadlock.

Then [[K]] = ∅, so K satisfies every formula, according to the definition.

76

Possible alternatives

Remove deadlocks by design:

equip deadlock states with a self loop

Interpretation: system stays in deadlock forever

adapt formula accordingly, if necessary

Treat deadlocks specially:

Check for deadlocks before LTL model checking, deal with them separately.

77

Tool demonstration: Spin

78

Demonstration of Spin

Spin is a versatile model-checking tool written by Gerard Holzmann at Bell Labs.

Received the ACM Software System Award in 2002

URL: http://spinroot.com

Book: Holzmann, The Spin Model Checker

79

Modelling with Spin

System description using Promela (Protocol Meta Language)

Suitable for describing finite systems

Concurrent processes, synchronous/asynchronous communication, variables,
data types

LTL model checking (with fairness and reduction techniques)

80

Example: Dekker’s Mutex algorithm

Model of a protocol for mutual exclusion:

bit turn;

bool flag0, flag1;

bool crit0, crit1;

active proctype p0() {

...

}

active proctype p1() {

...

}

81

Dekker: contents of process p0

active proctype p0() {
again: flag0 = true;

do
:: flag1 ->

if
:: turn == 1 ->

flag0 = false;
(turn != 1) -> flag0 = true;

:: else -> skip;
fi

:: else -> break;
od;

crit0 = true; /* critical section */ crit0 = false;

turn = 1; flag0 = false;
goto again;

}

Process p1: like p0, but all 0s and 1s exchanged

82

What’s going on here? (Promela syntax I)

Variable declarations:

bit turn;

bool flag0, flag1;

bool crit0, crit1;

turn can take values 0 or 1.

flag1 can become true or false.

intial values: by default 0 and false, resp.

Other data types: byte, user-defined types, ...

83

Promela syntax II

Process declaration:

active proctype p0() {
...
}

proctype defines a process type. active means that one instance of this
process type shall be active initially. It is also possible to activate more than one
instance initially, e.g.

active [2] proctype my_process() {
...
}

Concurrent processes are combined by interleaving: In each step of the system
one process makes a step while the others remain stationary.

84

Promela syntax III

labels / assignments / jumps

again: flag0 = true;

...

goto again;

empty statement:

skip

85

Promela syntax IV

Loop:

do

:: flag1 -> ...

:: else -> break;

od;

flag1 and else are “guards”

Execution branches non-deterministically to some branch whose guard is
satisfied.

The else branch can only be taken if no other guard is satisfied.

break leaves the do block.

86

Promela syntax V

Branching:

if

:: turn == 1 -> ...

:: else -> ...;

fi

Syntax and semantics as in do but without repetition.

(turn != 1) -> ...

Guarded command: blocks the process until the guard is satisfied.

87

Model checking using Spin (Example 1)

In the Dekker algorithm the two processes should never be in their critical
sections at the same time. This can be expressed by:

G ¬(crit0 ∧ crit1)

(where the atomic propositions crit0 and crit1 mean that the corresponding
Boolean variables are true).

LTL syntax in Spin: [] !(crit0 && crit1)

Checking the property with Spin (spinLTL script):

Property satisfied!

88

Model checking using Spin (Example 1)

In the Dekker algorithm the two processes should never be in their critical
sections at the same time. This can be expressed by:

G ¬(crit0 ∧ crit1)

(where the atomic propositions crit0 and crit1 mean that the corresponding
Boolean variables are true).

LTL syntax in Spin: [] !(crit0 && crit1)

Checking the property with Spin (spinLTL script):

Property satisfied!

89

Model checking using Spin (Example 2)

In the Dekker algorithm, a process wanting to enter its critical section should
eventually succeed.

G(flag0→ F crit0)

(analogously for the other process).

Syntax in Spin: [] (flag0 -> <> crit0)

Checking the property with Spin (spinLTL script):

Property not satisfied!

90

Model checking using Spin (Example 2)

In the Dekker algorithm, a process wanting to enter its critical section should
eventually succeed.

G(flag0→ F crit0)

(analogously for the other process).

Syntax in Spin: [] (flag0 -> <> crit0)

Checking the property with Spin (spinLTL script):

Property not satisfied!

91

Fairness in Spin

Process 0 cannot enter its critical section if process 1 gets no share of the
computation time to set flag1 back to false.

Such an execution is “unfair”.

Fairness assumption: Consider only those executions in which both processes
infinitely often perform a step.

Spin has got a special switch for this (activated by the script spinFairLTL).

92

Larger example: Needham-Schröder protocol

Source: Stephan Merz, Model Checking: A Tutorial Overview, 2001

Goal of the protocol: Alice and Bob try to agree on a “secret”.

�
�
�A
A
A

��
��

Alice
�
�
�A
A
A

��
��

Bob

j

1 : 〈A,NA〉B

�
2 : 〈NA,NB〉A

*

3 : 〈NB〉B

• Secret represented by nonces
〈NA,NB〉

• Messages can be intercepted

• Assumption: Alice and Bob can
communicate using secure public-key
cryptography

Is the protocol secure?

93

Analysis of the protocol using Spin

Representation as a finite system

finite number of principals Alice, Bob, Intruder

finite models of the principals one (symbolic) nonce per principal

intruder can only remember one single message

simple net model common message channel

messages as tuples 〈recipient , data〉

cryptography simulated compare keys rather than numerical computation

94

More about Promela

Declaration of enumeration types:

mtype = {red,green,blue};

mtype x;

The first line declares a bunch of symbolic constants.

The second line declares variable x, which can take values 0 (uninitialized), red, green,
blue.

Declaration of a record:

typedef newtype { bit b; mtype m; }

95

More about Promela

Message channels:

chan c = [3] of mtype;

c is the name of the channel.

The number in brackets gives the capacity; [0] means synchronous communication.

of is followed by the type of data items that may be sent on the channel.

Write: c!red;

Read: mtype color; c?color;

96

Promela model: Declarations

#define success (statusA == ok && statusB == ok)
#define aliceBob partnerA == bob
#define bobAlice partnerB == alice

Definition of an enumeration type
mtype = {msg1, msg2, msg3, alice, bob, intruder,

nonceA, nonceB, nonceI, keyA, keyB, keyI, ok};

typedef Crypt { mtype key, d1, d2; } Record type for messages
chan network = [0] of {mtype, /* message number */

mtype, /* recipient */
Crypt}; Common message channel

mtype partnerA, partnerB; State of Alice and Bob
mtype statusA, statusB;

bool knowNA, knowNB; Nonces known to the intruder

97

Promela model for Alice

active proctype Alice() {
if choose partner
:: partnerA = bob; partner_key = keyB;
:: partnerA = intruder; partner_key = keyI;
fi;

send the first msg
network ! msg1, partnerA, 〈partner_key, alice, nonceA〉;

wait for reply (second msg)
network ? msg2, alice, data;

check key and nonce
(data.key == keyA) && (data.d1 == nonceA);
partner_nonce = data.d2;

send the third msg
network ! msg3, partnerA, 〈partner_key, partner_nonce〉;
statusA = ok;

}

The model for Bob is similar

98

Promela model for intruder (1)

active proctype Intruder() {
do receive/intercept msg
:: network ? msg, _, data ->

if remember msg if undecryptable
:: intercepted = data;
:: skip;
fi;
if evaluate msg if decryptable
:: (data.key == keyI) ->

if
:: (data.d1 == nonceA || data.d2 == nonceA) -> knowNA = true;
:: else -> skip;
fi;
if
:: (data.d1 == nonceB || data.d2 == nonceB) -> knowNB = true;
:: else -> skip;
fi;

:: else -> skip;
fi;

:: ...

99

Promela model for intruder (2)

:: ...
:: if send first msg to bob

:: network ! msg1, bob, intercepted; repeat intercepted msg
:: data.key = keyB; compose a new msg

if the intruder can pose as Alice or himself
:: data.d1 = alice;
:: data.d1 = intruder;
fi;
if uses only known nonces
:: knowsNA -> data.d2 = nonceA;
:: knowsNB -> data.d2 = nonceB;
:: data.d2 = nonceI;
fi;
network ! msg1, bob, data;

fi;
:: ... similar code for other msgs
od;

}

100

Analysis of the protocol using Spin

Desirable properties:

G
(

statusA = ok ∧ statusB = ok ⇒

(partnerA = bob ⇔ partnerB = alice)
)

G(statusA = ok ∧ partnerA = bob ⇒ ¬knowsNA)

G(statusB = ok ∧ partnerB = alice ⇒ ¬knowsNB)

Result of the analysis:

– Property is violated!

101

Analysis of the protocol using Spin

Desirable properties:

G
(

statusA = ok ∧ statusB = ok ⇒

(partnerA = bob ⇔ partnerB = alice)
)

G(statusA = ok ∧ partnerA = bob ⇒ ¬knowsNA)

G(statusB = ok ∧ partnerB = alice ⇒ ¬knowsNB)

Result of the analysis:

– Property is violated!

102

The bug in the protocol

Alice opens a connection to Intruder.

Bob mistakenly believes he is talking to Alice.

�
�
�A
A
A

��
��

Alice
�
�
�A
A
A

��
��

Intruder
�
�
�A
A
A

��
��

Bob

j

1 : 〈A,NA〉I

�
4 : 〈NA,NB〉A

*

5 : 〈NB〉I

j

2 : 〈A,NA〉B

�
3 : 〈NA,NB〉A

*

6 : 〈NB〉B

This bug was found only 18 years after the protocol was invented!
[Needham, Schröder (1978), Lowe (1996)]

103

Part 4: Büchi automata

104

Preview

Model-checking problem: [[K]] ⊆ [[φ]] – how can we check this algorithmically?

(Historically) first approach: Translate K into an LTL formula ψK, check whether
ψK → φ is a tautology. Problem: very inefficient.

Language-/automata-theoretic approach: [[K]] and [[φ]] are languages (of infinite
words).

Find a suitable class of automata for representing these languages.

Define suitable operations on these automata for solving the problem.

This is the approach we shall follow.

105

Büchi automata

A Büchi automaton is a tuple

B = (Σ,S, s0,∆,F),

where:

Σ is a finite alphabet;

S is a finite set of states;

s0 ∈ S is an initial state;

∆ ⊆ S ×Σ× S are transitions;

F ⊆ S are accepting states.

Remarks:

Definition and graphical representation like for finite automata.

However, Büchi automata are supposed to work on infinite words, requiring a
different acceptance condition.

106

Example

Graphical representation of a Büchi automaton:

s2s1 a b

The components of this automaton are (Σ,S, s1,∆,F), where:

• Σ = {a, b} (symbols on the edges)

• S = {s1, s2} (circles)

• s1 (indicated by arrow)

• ∆ = {(s1, a, s2), (s2, b, s2)} (edges)

• F = {s2} (with double circle)

107

Language of a Büchi automaton

Let B = (Σ,S, s0,∆,F) be a Büchi automaton.

A run of B over an infinite word σ ∈ Σω is an infinite sequences of states ρ ∈ Sω

where ρ(0) = s0 and (ρ(i), σ(i), ρ(i + 1)) ∈∆ for i ≥ 0.

We call ρ accepting iff ρ(i) ∈ F for infinitely many values of i .

I.e., ρ infinitely often visits accepting states.
(By the pigeon-hole principle: at least one accepting state is visited infinitely often.)

σ ∈ Σω is accepted by B iff there exists an accepting run over σ in B.

The language of B, denoted L(B), is the set of all words accepted by B.

108

Büchi automata: examples

“infinitely often b” q0 q1

a
b

b

a

“infinitely often ab” q0 q1

a,b
a

b

109

Büchi automata and LTL

Let AP be a set of atomic propositions.

A Büchi automaton with alphabet 2AP accepts a sequence of valuations.

Claim: For every LTL formula φ there exists a Büchi automaton B such that
L(B) = [[φ]].

(We shall prove this claim later.)

110

Examples:

F p

G p

GF p

FG p

G(p → F q)

111

Example automaton for G(p → F q), with AP = {p, q}.

q1q0

{},{q},{p,q}
{p}

{q},{p,q}

{},{p}

Alternatively we can label edges with formulae of propositional logic; in this case,
a formula F stands for all elements of [[F]]. In this case:

q

q

q1q0

p q

p q

112

Operations on Büchi automata

The languages accepted by Büchi automata are also callled ω-regular
languages.

Like the usual regular languages, ω-regular languages are also closed under
Boolean operations.

I.e., if L1 and L2 are ω-regular, then so are

L1 ∪ L2, L1 ∩ L2, Lc
1.

We shall now define operations that take Büchi automata accepting some
languages L1 and L2 and produce automata for their union or intersection.

In the following slides we assume B1 = (Σ,S, s0,∆1,F) and
B2 = (Σ,T , t0,∆2,G) (with S ∩ T = ∅).

113

Union

“Juxtapose” B1 and B2 and add a new initial state.

In other words, the automaton B = (Σ, S∪T ∪{u}, u, ∆1∪∆2∪∆u, F ∪G)

accepts L(B1) ∪ L(B2), where

u is a “fresh” state (u /∈ S ∪ T);

∆u = { (u, σ, s) | (s0, σ, s) ∈∆1 } ∪ { (u, σ, t) | (t0, σ, t) ∈∆2 }.

114

Intersection I (a special case)

We first consider the case where all states in B2 are accepting, i.e. G = T .

Idea: Construct a cross-product automaton (like for FA), check whether F is
visited infinitely often.

Let B = (Σ, S × T , 〈s0, t0〉, ∆, F × T), where

∆ = { (〈s, t〉, a, 〈s′, t ′〉) | a ∈ Σ, (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2 }.

Then: L(B) = L(B1) ∩ L(B2).

115

Intersection II (the general case)

Principle: We again construct a cross-product automaton.

Problem: The acceptance condition needs to check whether both accepting sets
are visited infinitely often.

Idea: create two copies of the cross product.

– In the first copy we wait for a state from F .

– In the second copy we wait for a state from G.

– In both copies, once we’ve found one of the states we’re looking for, we
switch to the other copy.

We will choose the acceptance condition in such a way that an accepting run
switches back and forth between the copies infinitely often.

116

Let B = (Σ,U, u,∆,H), where

U = S × T × {1,2}, u = 〈s0, t0,1〉, H = F × T × {1}

(〈s, t ,1〉, a, 〈s′, t ′,1〉) ∈∆ iff (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2, s /∈ F

(〈s, t ,1〉, a, 〈s′, t ′,2〉) ∈∆ iff (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2, s ∈ F

(〈s, t ,2〉, a, 〈s′, t ′,2〉) ∈∆ iff (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2, t /∈ G

(〈s, t ,2〉, a, 〈s′, t ′,1〉) ∈∆ iff (s, a, s′) ∈∆1, (t , a, t ′) ∈∆2, t ∈ G

Remarks:

The automaton starts in the first copy.

We could have chosen other acceptance conditions such as S × G × {2}.

The construction can be generalized to intersecting n automata.

117

Intersection: example
a

b
b

a

a
b

b

a

s0 s1 t0 t1

B1 B2

s0,t0,1 s1,t1,2

s0,t0,2 s1,t1,1

a

a

b

b

a b

b a

B1 x B2

118

Complement

Problem: Given B1, construct B with L(B) = L(B1)c.

Such a construction is possible (but rather complicated). We will not require it for
the purpose of this course.

Additional literature:

Wolfgang Thomas, Automata on Infinite Objects,
Chapter 4 in Handbook of Theoretical Computer Science,

Igor Walukiewicz, lecture notes on Automata and Logic, chapter 3,
www.labri.fr/Perso/˜igw/Papers/igw-eefss01.ps

119

Deterministic Büchi automata

For finite automata (known from regular language theory), it is known that every
language expressible by a finite automaton can also be expressed by a
deterministic automaton, i.e. one where the transition relation ∆ is a function
S ×Σ→ S.

Such a procedure does not exist for Büchi automata.

In fact, there is no deterministic Büchi automaton accepting the same language
as the automaton below:

“Only finitely many a s.”

ba,b

b
s0 s1

120

Proof: Let L be the language of infinite words over {a, b} containing only finitely
many as. Assume that a deterministic Büchi automaton B with L(B) = L exists,
and let n be the number of states in B.

We have bω ∈ L, so let α1 be the (unique) accepting run for bω. Suppose that
an accepting state is first reached after n1 letters, i.e. s1 := α1(n1) is the first
accepting state in α1.

We now regard the word bn1abω, which is still in L, therefore accepted by some
run α2. Since B is deterministic, α1 and α2 must agree on the first n1 states.
Now, watch for the second occurrence of an accepting state in α2, i.e. let
s2 := α2(n1 + 1 + n2) be an accepting state for n2 minimal. Then, s1 6= s2
because otherwise there would be a loop around an accepting state containing a
transition with an a.

We now repeat the argument for bn1abn2abω, derive the existence of a third
distinct state, etc. After doing this n + 1 times, we conclude that B must have
more than n distinct states, a contradiction.

121

Preview

LTL

BA

We desire to translate LTL formulae into Büchi automata.

122

Preview

LTL

gener. BA

BA

Detour: We translate them into so-called generalized Büchi automata (GBA).

123

Preview

LTL

gener. BA

BA

GBA accept the same class of languages as BA.

124

Preview

LTL

gener. BA

BA

Translation from BA to LTL not possible in general.

125

Preview

(1)LTL

(3)

gener. BA

BA

(2)

We shall proceed in the order indicated above.

126

Generalized Büchi automata

A generalized Büchi automaton (GBA) is a tuple G = (Σ,S, s0,∆,F).

There is only one difference w.r.t. normal BA:

The acceptance condition F ⊆ 2S is a set of sets of states.

E.g., let F = {F1, . . . ,Fn}. A run ρ of G is called accepting iff for every Fi
(i = 1, . . . , n), ρ visits infinitely many states of Fi .

Put differently: many acceptance conditions at once.

127

GBA: Example

For the GBA shown below, let F = { {q0}, {q1} }.

a
b

b

a

q0 q1

Language of the automaton: “infinitely often a and infinitely often b”

Note: In general, the acceptance conditions need not be pairwise disjoint.

Advantage: GBA may be more succinct than BA.

128

Translations BA↔ GBA

GBA accept the same class of languages as BA.

I.e., for every BA there is a GBA accepting the same language, and vice versa.

Part 1 of the claim (BA→ GBA):

Let B = (Σ,S, s0,∆,F) be a BA.

Then G = (Σ,S, s0,∆, {F}) is a GBA with L(G) = L(B).

129

Part 2 of the claim (GBA→ BA):

Let G = (Σ,S, s0,∆, {F1, . . . ,Fn}) be a GBA.

We construct B = (Σ,S′, s′0,∆
′,F) as follows:

S′ = S × {1, . . . , n}

s′0 = (s0,1)

F = F1 × {1}

((s, i), a, (s′, k)) ∈∆′ iff 1 ≤ i ≤ n, (s, a, s′) ∈∆

and k =

i if s /∈ Fi
(i mod n) + 1 if s ∈ Fi

Then we have L(B) = L(G). (Idea: n-fold intersection)

130

GBA→ BA: example

The BA corresponding to the previous GBA (“infinitely often a and infinitely often
b”) is as follows:

b

b

q0,1 q1,1

q0,2 q1,2
b

a

a

a

b

a

131

Remark: Multiple initial states

Our definitions of BA and GBA require exactly one initial state.

For the translation LTL→ BA it will be convenient to use GBA with multiple initial
states.

Intended meaning: A word is regarded as accepted if it is accepted starting
from any initial state.

Obviously, every (G)BA with multiple initial states can easily be converted into a
(G)BA with just one initial state.

132

Part 5: LTL and Büchi automata

133

Overview

In this part, we shall solve the following problem:

Given an LTL formula φ over AP, we shall construct a GBA G (with multiple
initial states) such that L(G) = [[φ]].

(G can then be converted to a normal BA.)

Remarks:

Analogous operation for regular languages: reg. expression→ NFA

The crucial difference: it is not possible to provide an LTL→ BA translation in
modular fashion.

The automaton may have to check multiple subformulae at the same time
(e.g.: (GF p)→ (G(q → F r)) or (p U q) U r).

134

More remarks:

The construction shown in the following is comparatively simplistic.

It will produce rather suboptimal automata (size always exponential in |φ|).

Obviously, this is quite inefficient, and not meant to be done by pen and
paper, only as a “proof of concept”.

There are far better translation procedures but the underlying theory is rather
beyond the scope of the course.

Interesting, on-going research area!

135

Structure of the construction

1. We first convert φ into a certain normal form.

2. States will be “responsible” for some set of subformulae.

3. The transition relation will ensure that “simple” subformulae such as p or X p
are satisfied.

4. The acceptance condition will ensure that U-subformulae are satisfied.

136

Negation normal form

Let AP be a set of atomic propositions. The set of NNF formulae over AP is
inductively defined as follows:

If p ∈ AP then p and ¬p are NNF formulae.
(Remark: Negations occur exclusively in front of atomic propositions.)

If φ1 and φ2 are NNF formulae then so are

φ1 ∨ φ2, φ1 ∧ φ2, Xφ1, φ1 U φ2, φ1 R φ2, true, false.

Claim: For every LTL formula φ there is an equivalent NNF formula:

¬(φ1 R φ2) ≡ ¬φ1 U ¬φ2 ¬(φ1 U φ2) ≡ ¬φ1 R ¬φ2

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2 ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2

¬Xφ ≡ X¬φ ¬¬φ ≡ φ

137

NNF: Example

Translation into an NNF formula:

G(p → F q) ≡ ¬F¬(p → F q)

≡ ¬(true U ¬(p → F q))

≡ ¬true R (p → F q)

≡ false R (¬p ∨ F q)

≡ false R (¬p ∨ (true U q))

Remark: Because of this, we shall henceforth assume that the LTL formula in the
translation procedure is given in NNF.

Remark: true and false could be treated as syntactic sugar.

138

Subformulae

Let φ be an NNF formula. The set Sub(φ) is the smallest set satisfying:

φ ∈ Sub(φ);

if Xφ1 ∈ Sub(φ) then φ1 ∈ Sub(φ);

if φ1 U φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 R φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 ∨ φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

if φ1 ∧ φ2 ∈ Sub(φ) then φ1, φ2 ∈ Sub(φ);

¬φ1 ∈ Sub(φ) iff φ1 ∈ Sub(φ);

true ∈ Sub(φ);

false ∈ Sub(φ);

Note: We have |Sub(φ)| = O(|φ|) (one subformula per syntactic element).

139

Consistent sets

Recall item 2 of the construction:

Every state will be labelled with a subset of Sub(φ).

Idea: A state labelled by set M will accept a sequence iff it satisfies every single
subformula contained in M and violates every single subformula contained in
Sub(φ) \M.

For this reason, we will a priori exclude some sets M which would obviously lead
to empty languages.

The other states will be called consistent.

140

Definition: We call a set M ⊂ Sub(φ) consistent if it satisfies the following
conditions:

if φ1 ∧ φ2 ∈ Sub(φ) then φ1 ∧ φ2 ∈ M iff φ1 ∈ M and φ2 ∈ M;

if φ1 ∨ φ2 ∈ Sub(φ) then φ1 ∨ φ2 ∈ M iff φ1 ∈ M or φ2 ∈ M;

if ¬φ1 ∈ Sub(φ) then ¬φ1 ∈ M iff φ1 /∈ M;

if true ∈ Sub(φ) then true ∈ M;

false /∈ M;

By CS(φ) we denote the set of all consistent subsets of Sub(φ).

141

Translation (1)

Let φ be an NNF formula and G = (Σ,S,S0,∆,F) be a GBA such that:

Σ = 2AP

(i.e. the valuations over AP)

S = CS(φ)

(i.e. every state is a consistent set)

S0 = {M ∈ S | φ ∈ M }
(i.e. the initial states admit sequences satisfying φ)

∆ and F : see next slide

142

Translation (2)

Transitions: (M, σ,M ′) ∈∆ iff σ = M ∩ AP and:

– if Xφ1 ∈ Sub(φ) then Xφ1 ∈ M iff φ1 ∈ M ′;

– if φ1 U φ2 ∈ Sub(φ) then φ1 U φ2 ∈ M
iff φ2 ∈ M or (φ1 ∈ M and φ1 U φ2 ∈ M ′);

– if φ1 R φ2 ∈ Sub(φ) then φ1 R φ2 ∈ M
iff (φ1 ∈ M and φ2 ∈ M) or (φ2 ∈ M and φ1 R φ2 ∈ M ′).

Acceptance condition:

F contains a set Fψ for every subformula ψ of the form φ1 U φ2, where

Fψ = {M ∈ CS(φ) | φ2 ∈ M or ¬(φ1 U φ2) ∈ M }.

143

Translation: Example 1

φ = X p

{p, X p} {p}

{X p} { }

{ } {p}
{p}

{ }

{p}

{ }

{p}

{ }

This GBA has got two initial states and the acceptance condition F = ∅, i.e. every infinite run
is accepting.

144

Translation: Example 2

φ ≡ p U q

{q}

{p}

{ }

{p, q}

{q, p U q}

{p, p U q}

{p U q}

{p, q, p U q}
s0

s1

s2

s3 s7

s6

s5

s4

GBA with F = {{s0, s1, s4, s5, s6, s7}}, transition labels also omitted.

145

Proof of correctness

We want to prove the following:

σ ∈ L(G) iff σ ∈ [[φ]]

To this aim, we shall prove the following stronger property:

Let α be a sequence of consistent sets (i.e., states of G)
and let σ be a sequence of valuations over AP.

α is an accepting run of G over σ
iff σi ∈ [[ψ]] for all i ≥ 0 and ψ ∈ α(i).

The desired proof then follows from the choice of initial states.

146

Correctness (2)

Remark: By construction, we have σ(i) = α(i) ∩ AP for all i ≥ 0.

Proof via structural induction over ψ:

for true and false: by consistency of α(i).

for p ∈ AP: by p ∈ α(i) iff p ∈ σ(i) iff σi ∈ [[p]].

for ¬p: by ¬p ∈ α(i) iff p /∈ α(i) iff (by IH) σi /∈ [[p]] iff σi ∈ [[¬p]].

for ψ1 ∨ ψ2 and ψ1 ∧ ψ2: follows from consistency of α(i) and from the
induction hypothesis for ψ1 and ψ2.

147

Correctness (3)

for ψ = Xψ1: follows from the construction of ∆ and induction hypothesis for
ψ1.

for ψ = ψ1 R ψ2:

Follows from the construction of ∆, the recursion equation for R and the
induction hypothesis.

for ψ = ψ1 U ψ2:

Analogous to R, but additionally we must ensure that ψ2 ∈ α(k) for some
k ≥ i . Assume that this is not the case, then we have ψ1 U ψ2 ∈ α(k) for all
k ≥ i . However, none of these states is in Fψ, therefore α cannot be
accepting, which is a contradiction.

148

Complexity of the translation

For a formula φ, the translation procedure produces an automaton of size
O(2|φ|).

Question: Is there a better translation procedure?

149

Answer 1: No (not in general). There exist formulae for which any Büchi
automaton has necessarily exponential size.

Example: The following LTL formula over {p0, . . . , pn−1} simulates an n-bit
counter.

G(p0 6↔ X p0) ∧
n−1∧
i=1

G

((
pi 6↔ X pi

)
↔
(
pi−1 ∧ ¬X pi−1

))

The formula has size O(n). Obviously, any automaton for this formula must have
at least 2n states.

150

Answer 2: Yes (sometimes). There are translation procedures that produce
smaller automata for most cases.

Some tools:

Spin (command spin -f ’p U q’)

LTL2BA (also web applet)

Spot (currently most efficient)

Literature:

Gerth, Peled, Vardi, Wolper: Simple On-the-fly Automatic Verification of
Linear Temporal Logic, 1996

Oddoux, Gastin: Fast LTL to Büchi Automata Translation, 2001

151

Translation BA→ LTL

The reverse translation (BA→ LTL) is not possible in general.

I.e., there are Büchi automata B such that there is no formula φ with
L(B) = [[φ]] (Wolper, 1983).

q0 q1
{p}

{ }, {p}

The property “p holds in every second step” is not expressible in LTL (proof: next
slide).

152

Proof (BA 6→ LTL)

We first show a more general lemma:

Let φ be an arbitrary LTL formula over AP and n the number of X operators in
φ. We regard the sequences

σi = {p}i ∅ {p}ω

for i ≥ 0. For all pairs i, k > n we have: σi |= φ iff σk |= φ.

Proof by structural induction over φ:

If φ = p, for p ∈ AP, then n = 0 and i, k ≥ 1.
Thus, σi |= p and σk |= p.

For the other cases, the induction hypothesis assumes that the property holds
for φ1 and φ2, i.e. if φ1, φ2 contain n1 and n2 occurrences of X, resp., then
for all i1, k1 > n1 we have σi1 |= φ1 iff σk1

|= φ1, and analogously for φ2.

153

If φ = ¬φ1, then the proof follows directly from the induction hypothesis.

For φ = φ1 ∨ φ2: same

If φ = Xφ1, then n1 = n − 1. Since i − 1, k − 1 > n − 1 = n1, the induction
hypothesis implies: σ1

i = σi−1 |= φ1 iff σ1
k = σk−1 |= φ1, which implies the

proof.

For φ = φ1 U φ2: Let m > n. We have:

φ1 U φ2 ≡ φ2 ∨ (φ1 ∧X(φ1 U φ2))

Applying this law recursively we obtain:

σm |= φ iff σm |= φ2 ∨ (σm |= φ1 ∧ (σm−1 |= φ2 ∨ (. . .

(σn+1 |= φ1 ∧ σn |= φ1 U φ2))))

154

According to the induction hypothesis, we can replace indices bigger than n
equivalently by n + 1:

σm |= φ iff σn+1 |= φ2 ∨ (σn+1 |= φ1 ∧ (σn+1 |= φ2 ∨ (. . .

(σn+1 |= φ1 ∧ σn |= φ1 U φ2))))

This can be simplified to the following:

σm |= φ iff σn+1 |= φ2 ∨ (σn+1 |= φ1 ∧ σn |= φ1 U φ2)

Thus, the validity of σm |= φ is completely independent of m, leading to the
desired property for i and k , which concludes the proof of the lemma.

155

Let us now assume that there exists an LTL formula φ expressing the property of
the aforementioned BA (“p holds in every second step”). Let n be the number of
occurrences of X in φ.

Let us consider the sequences σn+1 and σn+2.

If n is even then σn+1 6|= φ and σn+2 |= φ. If n is odd, then vice versa.

However, the previous lemma tells us that this is impossible: either σn+1 and
σn+2 both satisfy φ, or none of them does. Therefore, such a formula φ cannot
exist.

156

The model-checking problem for LTL (preview)

Problem: Given a Kripke structure K = (S,→, r ,AP, ν) and an LTL formula φ
over AP, we ask whether K |= φ.

Solution: (sketch)

We re-interpret K as a Büchi automaton BK:

BK = (2AP,S, r ,∆,S), where ∆ = { (s, ν(s), t) | s → t }

Obviously, [[K]] = L(BK).

Moreover, we translate ¬φ into a Büchi automaton B¬φ.

157

We have:

K |= φ

⇐⇒ [[K]] ⊆ [[φ]]

⇐⇒ [[K]] ∩ [[¬φ]] = ∅
⇐⇒ L(BK) ∩ L(B¬φ) = ∅

Therefore:

We construct Büchi automata BK and B¬φ.

We intersect both automata (using the special-case construction).

Thus, the model-checking problem reduces to the problem of deciding
whether the product automaton accepts the empty language.

158

Part 6: Efficient Emptiness Test

for Büchi Automata

159

Overview

As we have seen, the model-checking problem reduces to checking whether the
language of a certain Büchi automaton B is empty.

Reminder: B arises from the intersection of a Kripke structure K with a BA for
the negation of φ.

If B accepts some word, we call such a word a counterexample.

K |= φ iff B accepts the empty language.

160

Typical instances:

Size of K: between several hundreds to millions of states.

Size of B¬φ: usually just a couple of states

Typical setting (e.g., in Spin):

K indirectly given in some description language (C, Java / in Spin: Promela);
model-checking tools will generate K internally.

B¬φ generated from φ before start of emptiness check.

161

Typical setting:

B generated “on-the-fly” from (the description of) K and from B¬φ and tested
for emptiness at the same time.

As a consequence, the size of K (and of B) is not known initially!

At the beginning, only the initial state is known, and we have a function
succ: S → 2S for computing the immediate successors of a given state (the
function implements the semantics of the description).

162

Memory requirements

Transitions not stored explicitly, will be explored “on demand” by calling succ

(calls to succ will be comparatively costly).

Hash table for explored states.

Information stored for each state:

Descriptor: program counter, variable values, active processes, etc
(often dozens or hundreds of bytes)

Auxiliary information: Data needed by the emptiness test
(a couple of bytes)

163

Simple solution I: Check for Lassos

Let B = (Σ,S, s0, δ,F) be a Büchi automaton.

L(B) 6= ∅ iff there is s ∈ F such that s0 →∗ s →+ s

s0 s ... s

Naı̈ve solution:

Check for each s ∈ F whether there is a cycle around s; let F◦ ⊆ F denote
the set of states with this property.

Check whether s0 can reach some state in F◦.

Time requirement: Each search takes linear time in the size of B, altogether
quadratic run-time→ unacceptable for millions of states.

164

Strongly connected components

C ⊆ S is called a strongly connected component (SCC) iff

s →∗ s′ for all s, s′ ∈ C;

C is maximal w.r.t. the above property, i.e. there is no proper superset of C
satisfying the above.

An SCC C is called trivial if |C| = 1 and for the unique state s ∈ C we have
s 6→ s (single state without loop).

165

Example: SCCs

s0

s1

s2 s3

s4

s5

s6

s7

s8

s9

s10

s11

The SCCs {s0} and {s1} are trivial.

166

Simple algorithm II: SCCs

Observation: L(B) 6= ∅ iff B has a non-trivial SCC that is reachable from s0 and
contains an accepting state.

Simple algorithm: for every accepting state s

compute the set Vs of the predecessors of s;

compute the set Ns of the successors of s;

Vs ∩ Ns is the SCC containing s;

test whether Vs ∩ Ns ⊃ {s} or s → s.

Running time: again quadratic

167

Efficient solution

In the following, we shall discuss a solution whose run-time is linear in |B|
(i.e. proportional to |S|+ |δ|).

The solution is based on depth-first search (DFS) and on partitioning B into its
SCCs.

Literature: [Tarjan 1972], Couvreur 1999, Gabow 2000

168

Depth-first search (basic version)

nr = 0;

hash = {};

dfs(s0);

exit;

dfs(s) {

add s to hash;

nr = nr+1;

s.num = nr;

for (t in succ(s)) {

// deal with transition s -> t

if (t not yet in hash) { dfs(t); }

}

}

169

Memory usage

Global variables: counter nr, hash table for states

Auxiliary information: “DFS number” s.num

search path: Stack for memorizing the “unfinished” calls to dfs

170

Example: Depth-first search

1

s1

s2 s3

s4

s5 s7

s6 s8

s9 s11

s10

Search path shown in red, other visited states black, states not yet seen grey.

171

Example: Depth-first search

1

s1

s2 s3

s4

s5 s7

s6 s8

s9 s11

s10

DFS starts at initial state and explores some immediate successor.

172

Example: Depth-first search

1

2

s2 s3

s4

s5 s7

s6 s8

s9 s11

s10

Successor state not yet visited; recursive call, assigned to number 2.

173

Example: Depth-first search

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

More unvisited states are being explored. . .

174

Example: Depth-first search

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

Edge from 4 to 3: target state already known, no recursive call

175

Example: Depth-first search

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

All immediate successors of 4 have been explored; backtrack.

176

Example: Depth-first search

1

2

3 4

5

s5 s7

s6 s8

s9 s11

s10

Backtracking proceeds to state 1, next successor gets number 5.

177

Example: Depth-first search

2

3 4 6

1

5 8

7 9

12 11

10

Possible numbering at the end of DFS.

178

Properties of the search path

(1) Let s0s1 . . . sn be the search path at some point during DFS.
Then we have si .num < sj .num iff i < j .
Moreover, si →∗ sj if i < j .

Proof: follows from the logic of the program and the order of recursive calls.

179

Search order

If a state has got multiple immediate successors, they must be explored in some
order.

The DFS numbering therefore depends on the order in which these successors
are explored; multiple different numberings are possible.

The search order may influence how quickly a counterexample is found (if one
exists)!

Annahme hier: Suchordnung extern gegeben.

Denkbare Erweiterung: “intelligente” Suchordnung, die zus”atzliches Wissen
”uber das Modell miteinbezieht.

180

Example: Search order

11 10 3

1

2 9

4 5

8 7

6

12

Possible alternative numbering for a different search order.

181

Search order

If a state has got multiple immediate successors, they must be explored in some
order.

The DFS numbering therefore depends on the order in which these successors
are explored; multiple different numberings are possible.

The search order may influence how quickly a counterexample is found (if one
exists)!

Assumption: search-order non-deterministic (or fixed from outside)

Possible extension: “intelligent” search order exploiting additional knowledge
about the model to find counterexamples more quickly.

182

Roots

The unique (w.r.t. a fixed search order) state of an SCC that is visited first during
DFS is called its root.

Remark: Different search orders may lead to different states designated as roots.

183

Example: Search order

4 6

8

7

12 11

10

1

2

3

5

9

Roots shown in blue when using the previous search order.

184

Properties of roots

(2) A root has the smallest DFS number within its SCC.

Proof: obvious

(3) Within each SCC, the root is the last state from which DFS backtracks, and,
at that point, the SCC has been explored completely (i.e., all states and edges
have been considered).

Proof: Suppose the DFS first reaches a root r . At that point, no other state of
the SCC has been visited so far, and all are reachable from r . Therefore, the
DFS will visit all those states (and possibly others) and backtrack from them
before it can backtrack from r .

185

Explored/active Subgraph

At each point during the DFS, let us distinguish two specific subgraphs of B.

The explored graph of B denotes the subgraph containing all visited states
and explored transitions.

We call an SCC of the explored graph(!) active, if the search path contains at
least one of its states (whose DFS call has not yet terminated).

A state is called active if it is part of an active SCC (it is not necessary for the
state itself to be on the search path).

The active graph is the subgraph of the explored graph induced by the active
states.

186

Example: Explored/active subgraph

1

2

3 4

5

s5 s7

s6 s8

s9 s11

s10

Here: explored graph shown in red and black, active SCCs: {1} and {5},
inactive SCCs {2} and {3,4}.

187

Properties of the active graph

(4) An SCC becomes inactive when we backtrack from its root.

Proof: follows from (3).

(5) An inactive SCC of the explored graph is also an SCC of B.

Proof: Follows immediately from (3) and (4).

(6) The roots of the active graph are a subsequence of the search path.

Proof: Follows from (4) because the root of an active SCC must be on the
search path.

188

(7) Let s be an active state and t (where t .num ≤ s.num) the root of its SCC
in the active graph. Then there is no active root u with
t .num < u.num < s.num.

Proof: Assume that such an active root u exists. Since u is active, it is on the
search stack, just like t , see (4). Then, because of (1), we have t →∗ u. As
dfs(u) has not yet terminated and u.num < s.num, s must have been
reached from u, i.e. u →∗ s. Because s, t are in the same SCC, s →∗ t
holds. But then, t , u are in the same SCC and cannot both be its root.

(8) Let s and t be two active states with s.num ≤ t .num. Then s →∗ t .

Let s′, t ′ be the (active) roots for s and t , resp. Because of (7) we have
s′.num ≤ t ′.num, thus because of (1) s′ →∗ t ′, and therefore s →∗ t .

189

Visualization

From the properties we’ve just proved, it follows that the active graph and its
SCCs are always of the following form, at any time during DFS:

s0

search path

trivial SCC with
accepting state

with additional states
SCC of s0

some number i
root labelled with

labelled with numbers
between i and j

some number j
root labelled with

190

Properties of our emptiness-checking algorithm

Run-time linear in |S|+ |δ|.

Explores B using DFS; reports a counterexample as soon as the explored graph
contains one. (*)

For every explored state s the algorithm computes succ(s) only once.

→ saves time because succ is the most expensive operation in practice.

191

Additional memory usage

Stack W with elements of the form (s,C), where

s is the root of an active SCC;

C is the set of state in the SCC of s.

(C may be implemented as a linked list, one additional pointer for each state.)

One bit per state indicating whether a state is active or not.

192

How the algorithm works

Actions of the algorithm:

Initialization

Discovering new edges (to old or new states)

Backtracking

With each action, we

update the contents of W and the “active” bits;

check whether the explored graph contains a counterexample.

193

Initialization

Explored graph consists just of the initial state s0, no edges.

One single element in W : the tuple (s0, {s0})

s0 is active.

194

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 1: t was never seen before:

The explored graph is extended by the state t and the edge s → t .

t is active and forms a trivial SCC within the active graph.

Extend W by (t , {t}).

Recursively start DFS on t .

195

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 2: t has been visited before and is inactive.

If t is inactive, then its SCC has been completely explored, see (3) and (4).
Therefore, s, t must belong to different SCCs, in particular, t →∗ s cannot
hold. Therefore, the edge s → t cannot be part of a lasso, and we can ignore
it.

No recursive call, W and the “active” bits remain unchanged.

196

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 3: t was visited before and is active, and t .num > s.num.

From (8) we already know that s →∗ t holds, therefore the SCCs of the active
graph do not change, and no new counterexample can be generated in this
way. Thus, we ignore the edge.

No recursive call, W and the “active” bits remain unchanged.

197

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 4: t was visited before and t .num = s.num.

Then s = t .

A counterexample has been discovered iff s is accepting.

Otherwise: no recursive call, W and the “active” bits remain unchanged.

198

Dealing with new edges

Suppose we discover an edge s → t . We distinguish five cases:

Case 5: t was seen before and is active, t .num < s.num.

Then because of (8) we have t →∗ s. Thus, s, t belong to the same SCC. Let
u, with u.num ≤ t .num, be the root of the SCC to which t belongs. Since s is
the latest element on the search path, it follows from (1) that all SCCs stored
on W from u upwards must be merged into one SCC.

We find u by removing elements from W until we find a root whose number is
no larger than t .num, compare (7).

A new counterexample is generated only iff one of the merged SCCs was
hitherto trivial consisting of an accepting state. Therefore, while removing
elements from W we simply check whether any of the roots is an accepting
state.

199

Backtracking

Suppose that all elements in succ(s) have been explored.

Case 1: s is a root.

Then s and its entire SCC become inactive, see (4).

Moreover, we remove the topmost element from W .

Case 2: s is not a root.

Then the root of its SCC is still active.

W and the “active” bits remain unchanged.

200

Et voilà. . .

nr = 0; hash = {}; W = {}; dfs(s0); exit;

dfs(s) {
add s to hash; s.active = true;
nr = nr+1; s.num = nr;
push (s,{s}) onto W;
for (t in succ(s)) {

if (t not yet in hash) { dfs(t); }
else if (t.active) {

D = {};
repeat

pop (u,C) from W;
if u is accepting { report success; halt; }
merge C into D;

until u.num <= t.num;
push (u,D) onto W;

} }
if s is the top root in W {

pop (s,C) from W;
for all t in C { t.active = false; }

}
}

201

Remarks on the algorithm

Cases 3 to 5 for handling edges are dealt with uniformly in the repeat-until loop.

The statement report success symbolizes the discovery of a
counterexample.

If dfs(s0) terminates, no counterexample exists.

Run-time linear in number of states plus number of transitions.

202

Example: Execution of the algorithm

1

s4

s5 s7

s6 s8

s9 s11

s10

1

Roots in W:

Situation at the beginning, only s0 explored.

203

Example: Execution of the algorithm

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

4321

Roots in W:

Situation after discovering three edges.

204

Example: Execution of the algorithm

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

321

Roots in W:

Edge 4→ 3 leads to merger of two SCCs.

205

Example: Execution of the algorithm

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

321

Roots in W:

(set component of each entry in W indicated by colours)

206

Example: Execution of the algorithm

1

2

3 4

s4

s5 s7

s6 s8

s9 s11

s10

1

Roots in W:

Backtracking makes 2, 3, and 4 inactive (shown in black).

207

Example: Execution of the algorithm

1

2

3 4

5

6 s7

s6 s8

s9 s11

s10

1 5 6

Roots in W:

Edge 6→ 4 is an example of Case 2 and may be ignored.

208

Example: Execution of the algorithm

1

2

3 4

5

6 7

8 s8

s9 s11

s10

1 5 6 7 8

Roots in W:

Situation when reaching 8.

209

Example: Execution of the algorithm

1

2

3 4

5

6 7

8 s8

s9 s11

s10

1 5 6

Roots in W:

Edge 8→ 6 leads to a merger.

210

Example: Execution of the algorithm

1

2

3 4

5

6 7

8 s8

s9 s11

s10

1 5

Roots in W:

Edge 8→ 5: Counterexample discovered because root 5 is accepting.

211

Extension to generalized Büchi automata

Let G be a GBA with n acceptance sets F1, . . . ,Fn.

L(G) is non-empty iff there exists a non-trivial SCC intersecting each set Fi
(1 ≤ i ≤ n).

Let us label each state s with the index set of the acceptance sets it is contained
in, denoted Ms. (E.g., if s in F1 and in F3, but in no other acceptance set, then
Ms = {1,3}.)

We extend W by a third component, an index set, i.e. a subset of {1, . . . , n}.

212

During the algorithm, we uphold the following invariant: if W has an entry
(s,C,M), then M =

⋃
t∈C Mt .

When two SCCs are merged, we take the union of the index sets.

A counterexample is discovered if this leads to an index set {1, . . . , n}.

If n is “small”, the required operations can be implemented using bit vectors
(constant time).

213

Modification for computing SCCs

The algorithm can also be used to partition the BA (or, in fact, any directed
graph) into its SCCs.

For this, we simply omit the acceptance test when merging active SCCs.

The algorithm may output a complete SCC as soon as one backtracks from its
root.

214

Part 7: Partial-order reduction

215

The story so far

Given:

a system S described as Promela model, C program, Petri net, . . .
⇒ obtain a Kripke structure K

specification as LTL formula φ
⇒ obtain a Büchi automaton B

Approach:

Construct the product of K and B and analyze it “on the fly”

run-time linear in |K| · |B|

216

State-space explosion

Size of B:

worst-case exponential in |φ|, but mostly harmless

unavoidable (in general)

Size of K:

often exponential in |S|

“State-space explosion” caused by concurrency, data, . . .

In the following, we will consider an improvement that tackles the effect of
concurrency.

217

Example: Leader-election protocol

The following protocol is due to Dolew, Klawe, Rodeh (1982). A model of it is
contained in the Spin distribution.

The protocol consists of n participants (where n is a parameter). The participants
are connected by a ring of unidirectional message channels. Communication is
asynchronous, and the channels are reliable. Each participant has a unique ID
(e.g., some random number).

Goal: The participants communicate to elect a “leader” (i.e., some distinguished
participant). The protocol shown here ensures low communication overhead
(O(n log n) messages).

218

Leader-election protocol

Participants are either active or inactive. Initially, all participants are active.

The protocol proceeds in rounds. In each round, at least half of the participants
will become inactive. (As a consequence, there are at most O(log n) rounds.

In each round every active participant receives the numbers of the two nearest
active participants (in incoming direction). A participant remains active only if the
value of the nearest neighbour is the largest of the three. In this case, the
participant adopts this largest number as its own.

The last remaining active participant is declared the leader.

219

Leader Election: Example

8
7

10

5

4

9 3

61
2

220

Leader Election: First round

8
7

10

5

4

9 3

61
2

(10)

(8)

(9)

(6)

221

Leader Election: Result of the first round

...
8

9

... 10

6

...

...

...

...

222

Leader Election: Second round

...
8

9

... 10

6

(9)

(10)

...

...

...

...

223

Leader Election: Result of the second round

...
9

...

10

...

...

...

...

......

224

Leader Election: Third round

...
9

...

10

...

...

...

...

......

(10)

225

Leader Election: Final result

...
10

...

...

...

...

...

......

...

226

Leader-Election protocol

Motivation: Low message overhead (O(n log n) messages).
(Most naı̈ve approaches require quadratically many messages.)

We generate the state space of this example

• with the methods we’ve seen so far

• using Spin

We will see that the methods we see so far will explore a number of states
exponential in n. It will run out of memory for fewer than 10 participants.

In contrast, Spin generates very few states (linearly many in n). This is due to the
way Spin handles concurrent processes. Let us take a closer look at what’s
happening.

227

Example

Pseudocode program with three concurrent processes:

int x,y,z init 0;
cobegin {P ‖ Q ‖ R} coend

P = p0: x := 1;
p1: end

Q = q0: y := 1;
q1: end

R = r0: z := 1;
r1: end

228

The transition system has got 8 = 23 states and 6 = 3! possible paths.

We omit the values of the variables in the states

{p0,q1,r0}

{p1,q0,r1}{p1,q1,r0}

{p1,q0,r0}

{p1,q1,r1}

{p0,q0,r0}

{p0,q0,r1}

{p0,q1,r1}

For n components we have 2n states and n! paths.

229

Consider properties like F(x = 1) or GF(x = 1).

The Kripke structure for AP = {x = 1} is:

{ }

{x=1}{x=1}

{x=1}

{x=1}

{ }

{ }

{ }

Idea: reduce size by considering only one path

230

Caution: Obviously, this is only possible if the paths are “equivalent”.

{ }

{x=1}{x=1}

{x=1}

{x=1}

{ }

{ }

{ }

I.e., in the eliminated states nothing “interesting” happens.

231

Partial-order techniques

Partial-order techniques aim to reduce state-space explosion due to concurrency.

One tries to exploit independences between transitions, e.g.

Assignments of variables that do not depend upon each other: .

x := z + 5 ‖ y := w + z

Send and receive on channels that are neither empty nor full.

Idea: avoid exploring all interleavings of independent transitions

correctness depends on whether the property of interest does not distinguish between
different such interleavings

may reduce the state space by an exponential factor

Methods: ample sets, stubborn sets, persistent sets, sleep sets

232

On-the-fly Model Checking

Important: It would be pointless to construct K first and then reduce its size.

(does not save space, we can analyze K during construction anyway)

Thus: The reduction must be done “on-the-fly”, i.e. while K is being constructed
(from a compact description such as a Promela model) and during analysis.

⇒ combination with depth-first search

233

Reduction and DFS

We must decide which paths to explore at this moment.

{ }

{x=1}

{x=1}

{x=1}

{x=1}

{ } { }

{ }

I.e. before having constructed (or “seen”) the rest!

234

Reduction and DFS

We must decide which paths to explore at this moment.

{ }

{x=1}

{x=1}

{x=1}

{x=1}

{ } { }

{ }

→ only possible with additional information!

235

Additional information

Transitions labelled with actions.

extracted from the underlying description of K, e.g. the statements of a
Promela model etc

Information about independence between actions

Do two actions influence each other?

Information about visibility of actions

Can an action influence the validity of any atomic proposition?

236

Labelled Kripke structures

We extend our model with actions:

K = (S,A,→, r ,AP, ν)

S, r , AP, ν as before, A is a set of actions, and→ ⊆ S × A× S.

We assume forthwith that transitions are deterministic, i.e. for each s ∈ S and
a ∈ A there is at most one s′ ∈ S such that (s, a, s′) ∈ →.

en(s) := { a | ∃s′ : (s, a, s′) ∈ →} are called the enabled actions in s.

237

Independence

I ⊆ A× A is called independence relation for K if:

for all a ∈ A we have (a, a) /∈ I (irreflexivity);

for all (a, b) ∈ I we have (b, a) ∈ I (symmetry);

for all (a, b) ∈ I and all s ∈ S we have:

if a, b ∈ en(s), s a→ t , and s b→ u,

then there exists v such that a ∈ en(u), b ∈ en(t), t b→ v and u a→ v .

238

Independence

s
a

s
a bb

uut t

b a

v

239

Independence: Example

In the example all pairs of distinct actions are independent.

{ }

{x=1}{x=1}

{x=1}

{x=1}

{ }

{ }

{ }

x:=1

x:=1 z:=1

z:=1

y:=1

y:=1 z:=1 z:=1 y:=1

y:=1

x:=1 z:=1

skip

Remark: In general, an independence relation may not be transitive!

240

(In-)Visibility

U ⊆ A is called an invisibility set, if all a ∈ U have the following property:

for all (s, a, s′) ∈ → we have: ν(s) = ν(s′).

I.e., no action in U ever changes the validity of an atomic proposition.

In the example: {y := 1, z := 1} (or every subset of it) is an invisibility set.

Motivation: Interleavings of visible actions may not be eliminated because they
might influence the validity of LTL properties.

241

Remarks

Sources for I and U: “external” knowledge about the model and the actions
possible in it

e.g. instruction only touches local variables,. . .

will not be obtained from first constructing all of K!

Every (symmetric) subset of an independence relation remains an independence
relation, every subset of an invisibility set remains an invisibility set.

→ conservative approximation possible

But: The bigger I and U are, the more information we have at hand to
improve the reduction.

242

In the following, we assume some fixed independence relation I and invisibility
set U.

We call a and b independent if (a, b) ∈ I, and dependent otherwise.

We call a invisible if a ∈ U, and visible otherwise.

In the example we take: I = {x := 1, y := 1, z := 1}2 \ Id
U = {y := 1, z := 1}

243

Preview

We first define a notion of “equivalent” runs.

We then consider some conditions guaranteeing that every equivalence class is
preserved in the reduced system.

Finally, we consider some practical implementation issues as solved in Spin.

244

Stuttering equivalence

Definition: Let σ, ρ be infinite sequences over 2AP . We call σ and ρ stuttering
equivalent iff there are integer sequences

0 = i0 < i1 < i2 < · · · and 0 = k0 < k1 < k2 < · · · ,

such that for all ` ≥ 0:

σ(i`) = σ(i` + 1) = · · · = σ(i`+1 − 1) =

ρ(k`) = ρ(k` + 1) = · · · = ρ(k`+1 − 1)

(I.e., σ and ρ can be partitioned into “blocks” of possibly differing sizes, but with
the same valuations.)

In our example: all infinite sequences of the Kripke structure are stuttering
equivalent.

245

We extend this notion to Kripke structures:

Let K,K′ be two Kripke structures with the same set of atomic propositions AP.

K and K′ are called stuttering equivalent iff for every sequence in [[K]] there
exists a stuttering equivalent sequence in [[K′]], and vice versa.

I.e., [[K]] and [[K′]] contain the same equivalence classes of runs.

In our example: The Kripke structure containing only “the rightmost path” is
stuttering equivalent to the original one.

246

Invariance under stuttering

Let φ be an LTL formula. We call φ invariant under stuttering iff for all
stuttering-equivalent pairs of sequences σ and ρ:

σ ∈ [[φ]] iff ρ ∈ [[φ]].

Put differently: φ cannot distinguish stuttering-equivalent sequences.
(And neither stuttering-equivalent Kripke structures.)

Theorem: Any LTL formula that does not contain an X operator is invariant under
stuttering.
Proof: Exercise.

247

Strategy

Assume φ does not contain any X.

We replace K by a stuttering-equivalent, smaller structure K′.

Then we check whether K′ |= φ, which is equivalent to K |= φ

(since φ is invariant under stuttering).

We generate K′ by performing a DFS on K, and in each step eliminating certain
successor states, based on the knowledge about properties of actions that is
imparted by I and U.

The method presented here is called the ample set method.

248

Ample sets

For every state s we compute a set red(s) ⊆ en(s); red(s) contains the actions
whose corresponding successor states will be explored.

(partially conflicting) goals:

red(s) must be chosen in such a way that stuttering equivalence is
guaranteed.

The choice of red(s) should reduce K strongly.

The computation of red(s) should be efficient.

249

Conditions for Ample Sets

C0: red(s) = ∅ iff en(s) = ∅

C1: Every path of K starting at a state s satisfies the following: an action
dependent on some action in red(s) cannot be executed without an action from
red(s) occurring first.

C2: If red(s) 6= en(s) then all actions in red(s) are invisible.

C3: For all cycles in K′ the following holds: if a ∈ en(s) for some state s in the
cycle, then a ∈ red(s′) for some (possibly other) state s′ in the cycle.

250

Idea

C0 ensures that no additional deadlocks are introduced.

C1 and C2 ensure that every stuttering-equivalence class of runs is preserved.

C3 ensures that enabled actions cannot be omitted forever.

251

Example

Pseudocode program with two concurrent processes:

int x,y init 0;
cobegin {P ‖ Q} coend

P = p0: x := x + 1; (action a)
p1: y := y + 1; (action b)
p2: end

Q = q0: x := x + 2; (action c)
q1: y := y ∗ 2; (action d)
q2: end

Independent actions: all pairs but (b,d) and (d ,b).

252

Transition system of the example:

(p0,q0,x=0,y=0)

(p1,q0,x=1,y=0) (p0,q1,x=2,y=0)

(p1,q1,x=3,y=0)(p2,q0,x=1,y=1) (p0,q2,x=2,y=0)

(p2,q1,x=3,y=1) (p1,q2,x=3,y=0)

(p2,q2,x=3,y=2) (p2,q2,x=3,y=1)

a c

cb a d

c b d a

bd

253

Possible reduced structure if b, d are visible:

(p0,q0,x=0,y=0)

(p1,q1,x=3,y=0)

b

(p2,q1,x=3,y=1)

d

(p2,q2,x=3,y=2)

d

(p1,q2,x=3,y=0)

b

(p2,q2,x=3,y=1)

(p2,q0,x=1,y=1)

c

b

(p1,q0,x=1,y=0)

a

c a

c

(p0,q1,x=2,y=0)

d

(p0,q2,x=2,y=0)

a

254

Possible reduced structure if at most d is visible:

(p0,q0,x=0,y=0)

(p1,q0,x=1,y=0)

c

a

(p1,q1,x=3,y=0)

b

(p2,q1,x=3,y=1)

d

(p2,q2,x=3,y=2)

d

(p1,q2,x=3,y=0)

b

(p2,q2,x=3,y=1)

c

(p0,q1,x=2,y=0)

a d

(p0,q2,x=2,y=0)

a

(p2,q0,x=1,y=1)

c

b

255

Can we do even better if no action is visible?

c

(p0,q1,x=2,y=0)(p1,q0,x=1,y=0)

(p1,q2,x=3,y=0)

b

(p2,q2,x=3,y=1)

(p2,q0,x=1,y=1)

c

b

a

(p1,q1,x=3,y=0)

b

c

(p2,q1,x=3,y=1)

d

(p2,q2,x=3,y=2)

d

a

a

(p0,q2,x=2,y=0)

d

(p0,q0,x=0,y=0)

256

(Non-)Optimality

An ideal reduction would retain only one execution from each stuttering
equivalence class.

C0–C3 do not ensure such an ideal reduction, i.e. the resulting reduced structure
is not minimal in general.

Example (see next slide): two parallel processes with four actions each
(a1, . . . , a4 or b1, . . . , b4, resp.), all independent.

257

The valuation of the blue state differs from the others:

a1

a1

a1

a1

a1

a4

a4

a4

a4

a4

b1

b1

b1

b1

b1

b4

b4

b4

b4

b4

a2

a3

a3

a2

b2

b2 b3

a3

a2b2

b2

b2

b3

b3

a2

a2

a3

a3

b3

b3

258

Minimal stuttering-equivalent structure:

b2 b3

a1

b1

b2

a2 b3

a2

b4

a3

a4

a2

b1a3

b1a4

b1 a4

b2

b4

b3 a4

a4

a3

a3

b3

b4

a3 a2

a1b4

a1 b4

b3

b2

a1a2

b2

b1

a1

259

Visible actions: a2, a3, b2, b3 (in green):

a1

a1

a1

a1

a1

a4

a4

a4

a4

a4

b1

b1

b1

b1

b1

b4

b4

b4

b4

b4a2

a2

a2

a2

a2

a3

a3

a3

a3

a3

b3

b3

b2

b2

b2

b2

b2

b3

b3

b3

260

Smallest structure satisfying C0–C3:

a4

b1

b4

a1

b1

a2 b2

a2

b1

b1

a3

b1

a4

a4 b4

b2

b3

b4a1

a1

a1

a1

a3b3

b4 a4

b3

b2 a4

a3 b3

a3 b2 a2 b3

b4

a2

a3

b2 a2

261

Correctness

Claim: If red satisfies conditions C0 through C3, then K′ is stuttering-equivalent
to K.

Proof (idea): Let σ be an infinite path in K. We show that in K′ there exists an
infinite path τ such that ν(σ) and ν(τ) are stuttering-equivalent.

In the following, σ is shown in brown and τ in red. States known to fulfil the same
atomic propositions are drawn in the same colours.

262

b

Suppose that the transition labelled with b is the first in σ that is not present in K′.
Ug

263

a1 b

a1b

Because of C0 the blue state must have another enabled action, let us call it a1.
a1 is independent of b (C1) and invisible (C2).

264

a1 b

a1b

Either the second b-transition is in K′, then we take τ to be the sequence of red
edges. . .

265

a1 b

a1b

b
an

b an

. . . or b will be “deferred” in favour of a2, . . . , an, all of which are also invisible and
independent of b.

266

a1 b

a1b

b
an

b an

Since K is finite, this process must either end or create a cycle (in K′). Because
of C3, b must be activated in some state along the cycle.

267

a1 b

a1b

b
an

b an

Both σ and τ contain blue states followed by green ones.
Ug

268

a1 b

a1b

b
an

b an

c

σ either continues with a1, . . . , an until the paths “converge”, or it “diverges”
again with an action c.

269

a1 b

a1b

b
an

b an

c

Then, however, c must be independent from a2 by C1.
Ug

270

a1 b

a1b

b
an

b

c

can

an

By the independence, c is enabled in the next green state and again
independent of a3 and, by induction, independent of all a2 . . . , an. Ug

271

a1 b

a1b

b
an

b

c

can

an

c

Repeating the previous arguments, we can conclude that K′ also has a
c-labelled transition along the red path.

272

a1 b

a1b

b
an

b

c

can

an

c

Both the red and the brown path again contains blue, green, and purple states, in
that order. The previous arguments can be repeated ad infinitum.

273

The approach in Spin

Implementing red(s) depends on the underlying description of the system; here,
we will discuss what Spin is doing for Promela models.

In general, a Promela model will contain multiple concurrent processes
P1, . . . ,Pn communicating via global variables and message channels.

Let Ei(s) denotes the actions of process Pi activated in s.

Spin tests the sets Ei(s), for i = 1, . . . , n, as candidates for red(s). If all of them
fail, it “gives up” and takes red(s) = en(s).

274

Checking conditions: Implementation issues

C0 and C2: obvious

C1 and C3 depend on the complete state graph

We shall find conditions that are stronger than C1 and C3. These will exclude
certain reductions but can be efficiently implemented during DFS.

Replace C3 by C3’:

If red(s) 6= en(s) for some state s, then no action of red(s) may lead to a
state that is currently on the search stack of the DFS.

275

Heuristic for C1 in Spin

Recall: Ei(s) satisfies C1 if no action a that depends on Ei(s) may be executed
before an action from Ei(s) itself.

A sufficient condition for Ei(s) to satisfy C1 is the conjunction of

(i) No action of other processes depends on Ei(s)

(so a cannot be an action from other process)

(ii) No action of Pi outside Ei(s) can become activated by an action of another
process.
(so a cannot be an action of Pi either)

276

Heuristic for C1 in Spin: Dependent actions

Dep(a) := { b | (a, b) /∈ I } contains the actions dependent on a.

In Spin, if a is an action of Pi , then Dep(a) will be overapproximated by:

all other actions in Pi ;

actions in other processes that write to a variable from which a reads, or vice
versa;

if a reads from a message channel, then all actions in other processes that
read from the same channel.

if a writes to a message channel, then all actions in other processes that write
to the same channel.

277

Heuristic for C1 in Spin: Activation

Let Ai denote the possible actions in process Pi .

Let Pc i(s) denote the actions possible in Pi at label pci(s).

Observe that some actions of Pc i(s) may not be activated in s itself!

- Their guards may not be enabled at s, but may become enabled due to an
action from another process.

278

Heuristic for C1 in Spin: Activation

Let Pre(a) be the set of actions that might activate a, i.e. (some
overapproximation of) the set

{ b | ∃s : a 6∈ en(s), b ∈ en(s), a ∈ en(b(s)) }

In Spin: if a is an action of Pi then we can choose Pre(a) as the set containing:

- all actions of Pi leading to a control-flow label in which a can be executed;

- if the guard of a uses global variables, all actions in other processes that
modify these variables;

- if a reads from a message channel or writes into it, then all actions in other
processes that do the opposite (write/read).

279

Test for C1 in Spin

function check C1(s,Pi)

for all Pj 6= Pi do
if Dep(Ei(s)) ∩ Aj 6= ∅

* some action of P_j *\

* is dependent of E_i(s) *\

or Pre(Pc i(s) \ Ei(s)) ∩ Aj 6= ∅
* some action of P_i outside E_i(s) can *\

* become activated by an action of P_j *\

then return False;
return True;

end function

280

Part 8: Branching-time logics

Motivation

Linear-time logic describes properties of runs. However, it cannot describe the
options that are possible in a system.

Example: The behaviour of the structure below cannot be adequately described
using LTL. At any time, the system may change to a state satisfying p, however,
it may never do so.

s0 s1

{ } {p}

282

Branching-time logics allow to speak about the branching behaviour, i.e. about
multiple possible futures. Hence, branching-time logics are evaluated over trees
of valuations.

We shall first extend LTL into a branching-time logic called CTL∗. CTL∗ is quite
powerful, however, the associated model-checking problem is correspondingly
hard.

We then introduce a restriction of CTL∗, called CTL. CTL is probably the most
popular branching-time logic in verification because

it is still expressive enough for most applications;

it has useful algorithmic properties;

correspondingly, it is often used in automated verification.

283

Valuation trees

Let T = (V ,→, r ,AP, ν) be a Kripke structure (where V may be an infinite set).
We call T a valuation tree iff

(V ,→) is a directed tree with root r (i.e. for every node v ∈ V there is exactly
one path from r to v).

dve denotes the subtree whose root is v ∈ V .

284

Computation tree

Let K = (S,→, s0,AP, ν) be a Kripke structure and s ∈ S.

By TK(s) we denote the (unique) valuation tree with root r and the following
properties:

ν(r) = ν(s)

s → s′ holds in K iff in TK(s) there is a transition r → r ′ such that dr ′e is
isomorphic to TK(s′).

We call TK(s) the computation tree of s.
(Note: TK(s0) is also sometimes called the (acyclic) unfolding of K.)

285

CTL∗: Syntax

Let AP be a set of atomic propositions. The set of CTL∗ formulae over AP is
inductively defined as follows:

if p ∈ AP, then p is a formula;

if φ1, φ2 are formulae, then ¬φ1 and φ1 ∨ φ2 are formulae.

Moreover, let φ be an ‘extended’ LTL formula where atomic propositions are
replaced by CTL∗ formulae. Then Eφ is a CTL∗ formula.

Note: We use Aφ as an abbreviation for ¬E¬φ.

286

CTL∗: Semantics

Let T be a valuation tree with root r and φ a CTL∗ formula. We write T |= φ for
“T satisfies φ.”

T |= p iff p ∈ AP and p ∈ ν(r)

T |= ¬φ iff T 6|= φ

T |= φ1 ∨ φ2 iff T |= φ1 or T |= φ2

T |= Eφ iff T contains some infinite path σ starting at r

such that ν(σ) |= φ.

(Note: When φ contains Eφ′ as an “atomic proposition”

then we deem ν(σ)i |= Eφ′ iff dσ(i)e |= Eφ′.)

We say K |= φ iff TK(s0) |= φ, where K is a Kripke structure with initial state s0.

287

A model-checking algorithm for CTL∗

Let K be a Kripke structure. By K[s], where s is a state of K we denote the
same structure as K, but with s as initial state.

Given an LTL formula φ we require an algorithm that solves the global
model-checking problem for LTL: Find the set [[φ]]K of all states in K such that
s ∈ [[φ]]K iff K[s] |= φ.

Now, let φ be a CTL∗ formula. We follow these steps:

Either φ does not contain any E-subformula. Then the procedure is obvious.

Otherwise, let φ′ = Eψ be a subformula of φ such that ψ does not contain
another E-subformula. We compute M := S \ [[¬ψ]]K. We then replace φ′ by
a “fresh” atomic proposition p and modify ν such that for all states s, we have
p ∈ ν(s) iff s ∈ M. We then repeat the procedure until all Es are eliminated.

288

Part 9: CTL

CTL: Overview

We now define CTL (Computation-Tree Logic) as a syntactic restriction of CTL∗.

Operators are restricted to the following form:

Q T
X
F
G
U

E
A

next
finally
globally
until

there exists an execution
for all executions

(and possibly others)

290

CTL: Syntax

We define a minimal syntax first. Later we define additional operators with the
help of the minimal syntax.

Let AP be a set of atomic propositions: The set of CTL formulas over AP is as
follows:

if a ∈ AP, then a is a CTL formula;

if φ1, φ2 are CTL formulas, then so are

¬φ1, φ1 ∨ φ2, EXφ1, EGφ1, φ1 EU φ2

291

It is easy to see that every CTL formula is also a CTL∗ formula.

Previously, we defined the satisfaction relationship between valuation trees and
CTL∗ formulae. Since each state of a Kripke structure has a clearly defined
computation tree, we may just as well say that a state satisfies a CTL/CTL∗

formula, meaning that its computation tree does.

Let K be a Kripke structure, let s one of its states, and let φ be a CTL formula.
On the following slide, we define a set [[φ]]K in such a way that s ∈ [[φ]]K iff
TK(s) |= φ.

292

CTL: Semantics

Let K = (S,→, r ,AP, ν) be a Kripke structure.

We define the semantic of every CTL formula φ over AP w.r.t. K as a set of
states [[φ]]K, as follows:

[[a]]K = { s | a ∈ ν(s) } for a ∈ AP

[[¬φ1]]K = S \ [[φ1]]K

[[φ1 ∨ φ2]]K = [[φ1]]K ∪ [[φ2]]K

[[EXφ1]]K = { s | there is a t s.t. s → t and t ∈ [[φ1]]K }
[[EGφ1]]K = { s | there is a run ρ with ρ(0) = s

and ρ(i) ∈ [[φ1]]K for all i ≥ 0 }
[[φ1 EU φ2]]K = { s | there is a run ρ with ρ(0) = s and k ≥ 0 s.t.

ρ(i) ∈ [[φ1]]K for all i < k and ρ(k) ∈ [[φ2]]K }

293

We say that K satisfies φ (denoted K |= φ) iff r ∈ [[φ]]K.

The local model-checking problem is to check whether K |= φ.

The global model-checking problem is to compute [[φ]]K.

We declare two formulas equivalent (written φ1 ≡ φ2) iff for every Kripke
structure K we have [[φ1]]K = [[φ2]]K.

In the following, we omit the index K from [[·]]K if K is understood.

294

CTL: Extended syntax

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) AXφ ≡ ¬EX¬φ
true ≡ a ∨ ¬a AGφ ≡ ¬EF¬φ
false ≡ ¬true AFφ ≡ ¬EG¬φ

φ1 EW φ2 ≡ EGφ1 ∨ (φ1 EU φ2) φ1 AW φ2 ≡ ¬(¬φ2 EU ¬(φ1 ∨ φ2))

EFφ ≡ true EU φ φ1 AU φ2 ≡ AFφ2 ∧ (φ1 AW φ2))

Other logical and temporal operators (e.g.→, ER, AR), . . . may also be defined.

295

CTL: Examples

We use the following computation tree as a running example (with varying
distributions of red and black states):

{p}

{p}

{q}

...

...

...

...

...

...
{q}

In the following slides, the topmost state satisfies the given formula if the black
states satisfy p and the red states satisfy q.

296

...

...

...

...

...

...

AG p

297

...

...

...

...

...

...

AF p

298

...

...

...

...

...

...

AX p

299

...

...

...

...

...

...

p AU q

300

...

...

...

...

...

...

EG p

301

...

...

...

...

...

...

EF p

302

...

...

...

...

...

...

EX p

303

...

...

...

...

...

...

p EU q

304

Solving nested formulas: Is s0 ∈ [[AFAG x]]?

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

To compute the semantics of formulas with nested operators, we first compute
the states satisfying the innermost formulas; then we use those results to solve
progressively more complex formulas.

In this example, we compute [[x]], [[AG x]], and [[AFAG x]], in that order.

305

Bottom-up method (1): Compute [[x]]

{y}

{z}

s3

{ }

s7

s5

s1

{y,z}

s4

s6

s0

s2
{x,z}

{x,y}

{x,y,z} {x}

306

Bottom-up method (2): Compute [[AG x]]

{y}

{z}

{x}

s3

{ }

s7

s5

s1

{y,z}

s4
{x,y,z}

s6

s0

s2
{x,z}

{x,y}

307

Bottom-up method (3): Compute [[AFAG x]]

{z}

{x}

s3

{ }

s7

s5

s1

s4

s6

s0

s2
{y} {x,z}

{x,y}{y,z}

{x,y,z}

308

Example: Dining Philosophers

1

2

34

5

Five philosophers are sitting around a table, taking turns at thinking and eating.

We shall express a couple of properties in CTL. Let us assume the following
atomic propositions:

ei =̂ philosopher i is currently eating

309

Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e1 ∧ e4)

“It is possible that Philosopher 3 never eats.”

EG¬e3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(¬e1 ∧ e2 ∧ ¬e3 ∧ ¬e4)

310

Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e1 ∧ e4)

“It is possible that Philosopher 3 never eats.”

EG¬e3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(¬e1 ∧ e2 ∧ ¬e3 ∧ ¬e4)

311

Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e1 ∧ e4)

“It is possible that Philosopher 3 never eats.”

EG¬e3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(¬e1 ∧ e2 ∧ ¬e3 ∧ ¬e4)

312

Properties of the Dining Philosophers

“Philosophers 1 and 4 will never eat at the same time.”

AG¬(e1 ∧ e4)

“It is possible that Philosopher 3 never eats.”

EG¬e3

“From every situation on the table it is possible to reach a state where only
philosopher 2 is eating.”

AGEF(¬e1 ∧ e2 ∧ ¬e3 ∧ ¬e4)

313

Part 10: Algorithms for CTL

CTL-Model-Checking

In the following, let K = (S,→, r ,AP, ν) be a Kripke structure (where S is finite)
and φ a CTL formula over AP.

We shall solve the global model-checking problem for CTL, i.e. to compute [[φ]]K
(all states of K whose computation tree satisfies φ).

Our solution works “bottom-up”, i.e. it considers simple subformulae first, and
then successively more complex ones.

The solution shown here considers only the minimal syntax. For additional
efficiency one could extend it by treating some cases of the extended syntax
more directly.

315

The ‘bottom-up’ algorithm for CTL

The algorithm reduces φ step by step to a single atomic proposition. Reminder:
[[p]]K = { s | p ∈ ν(s) } for p ∈ AP. In the following, we abbreviate this set as
µ(p).

1. Check whether φ = p, where p ∈ AP. If yes, output µ(p) and stop.

2. Otherwise, φ contains some subformula ψ of the form ¬p, p ∨ q, EX p, EG p,
or p EU q, where p, q ∈ AP. Compute [[ψ]]K using the algorithms on the
following slides.

3. Let p′ /∈ AP be a “fresh” atomic proposition. Add p′ to AP and set
µ(p′) := [[ψ]]K. Replace all occurrences of ψ in φ by p′ and continue at step
1.

316

Computation of [[ψ]]K: simple cases

Case 1: ψ ≡ ¬p, p ∈ AP

By definition, [[ψ]]K = S \ µ(p).

Case 2: ψ ≡ p ∨ q, p, q ∈ AP

Then [[ψ]]K = µ(p) ∪ µ(q).

Case 3: ψ ≡ EX p, p ∈ AP

In the following, let pre(X), for X ⊆ S, denote the set

pre(X) := { s | ∃t ∈ X : s → t }.

Then by definition [[ψ]]K = pre(µ(p)).

317

Computation of [[ψ]]K: EU and EG

We shall first define EU and EG in terms of fixed points.

EU is characterized by a smallest fixed point: We first assume that no state
satisfies the EU formula and then, one by one, identify those that do satisfy it
after all.

By contrast, EG can be characterized by a largest fixed point: We first assume
that all states satisfy a given EG formula and then, one by one, eliminate those
that do not.

Based on this, we then derive algorithms for EG and EU.

318

Computation of [[ψ]]K: EG

Case 4: ψ ≡ EG p, p ∈ AP

Lemma 1: [[EG p]]K is the largest solution (w.r.t. ⊆) of the equation

X = µ(p) ∩ pre(X).

Proof: We proceed in two steps:

1. We show that [[EG p]]K is indeed a solution of the equation, i.e.

[[EG p]]K = µ(p) ∩ pre([[EG p]]K).

Reminder: [[EG p]]K = { s | ∃ρ : ρ(0) = s ∧ ∀i ≥ 0: ρ(i) ∈ µ(p) }.

“⇒” Let s ∈ [[EG p]]K and ρ a “witness” path. Then obviously s ∈ µ(p).
Moreover, ρ(1) ∈ [[EG p]]K (because of ρ1), hence s ∈ pre([[EG p]]K).

319

Continuation of the proof of Lemma 1:

1. “⇐” Let s ∈ µ(p) ∩ pre([[EG p]]K). Then s has a direct successor t ,
where a path ρ starts proving that t ∈ [[EG p]]K. Thus, sρ is a path
witnessing that s ∈ [[EG p]]K.

2. We show that [[EG p]]K is indeed the largest solution, i.e., if M is a
solution of the equation, then M ⊆ [[EG p]]K.

Let M ⊆ S be a solution of the equation, i.e. M = µ(p) ∩ pre(M), and let
s ∈ M. We shall show s ∈ [[EG p]]K.

– Since s ∈ M, we have s ∈ µ(p) and s ∈ pre(M).

– Since s ∈ pre(M), there exist s1 ∈ M with s → s1.

– Repeating this argument, we can construct an infinite path ρ = ss1 · · · in
which all states are contained in µ(p). Therefore, s ∈ [[EG p]]K.

320

Lemma 2: Consider the sequence S, π(S), π(π(S)), . . ., i.e.
(
πi(S)

)
i≥0

,

where π(X) := µ(p) ∩ pre(X).
For all i ≥ 0 we have πi(S) ⊇ [[EG p]]K.

We state the following two facts:

(1) π is monotone: if X ⊇ X ′, then π(X) ⊇ π(X ′).

(2) The sequence is descending: S ⊇ π(S) ⊇ π(π(S)) . . . (follows from (1)).

Proof of Lemma 2: (induction over i)
Base: i = 0: obvious.
Step: i → i + 1:

πi+1(S) = µ(p) ∩ pre(πi(S))

⊇ µ(p) ∩ pre([[EGϕ]]K) (i.h. and monotonicity)

= [[EG p]]K

321

Lemma 3: There exists an index i such that πi(S) = πi+1(S), and
[[EG p]]K = πi(S).

Proof: Since S is finite, the descending sequence must reach a fixed point, say
after i steps. Then we have πi(S) = π(πi(S)) = µ(p) ∩ pre(πi(S)).
Therefore, πi(S) is a solution of the equation from Lemma (1).

Because of Lemma 1, we have πi(S) ⊆ [[EG p]]K.
Because of Lemma 2, we have πi(S) ⊇ [[EG p]]K.

322

An algorithm for EG

Lemma 3 gives us a strategy for computing [[EG p]]K: compute the sequence
S, π(S), · · · until a fixed point is reached.

For practicality, one would start immediately with X := µ(p). Then, in each
round, one eliminates those states having no successors in X .

This can be efficiently implemented in O(|K|) time (“reference counting”).

323

Example: Computation of [[EG y]]K (1/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

π0(S) = S

324

Example: Computation of [[EG y]]K (2/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

π1(S) = µ(y) ∩ pre(S)

325

Example: Computation of [[EG y]]K (3/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

π2(S) = µ(y) ∩ pre(π1(S))

326

Example: Computation of [[EG y]]K (4/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

π3(S) = µ(y) ∩ pre(π2(S)) = π2(S): [[EG y]]K = {s0, s2, s4}

327

Computation of EU

Case 5: ψ ≡ p EU q, p, q ∈ AP

Analogous to EG (proofs omitted):

Lemma 4: [[p EU q]]K is the smallest solution (w.r.t. ⊆) of the equation

X = µ(q) ∪ (µ(p) ∩ pre(X)).

Lemma 5: [[p EU q]]K is the fixed point of the sequence

∅, ξ(∅), ξ(ξ(∅)), . . .where ξ(X) := µ(q) ∪ (µ(p) ∩ pre(X))

328

An algorithm for EU

Lemma 5 proposes a strategy: Compute the sequence ∅, ξ(∅), · · · until a fixed
point is reached.

In practice one would start with X := µ(q). Then, in each step, one can add
those direct predecessors that are in µ(p).

Can be done efficiently in O(|K|) time (multiple backwards DFS).

329

Example: Computation of [[z EU y]]K (1/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

ξ0(∅) = ∅

Uq

330

Example: Computation of [[z EU y]]K (2/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

ξ1(∅) = µ(y) ∪ (µ(z) ∩ pre(ξ0(∅)))

Uq

331

Example: Computation of [[z EU y]]K (3/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

ξ2(∅) = µ(y) ∪ (µ(z) ∩ pre(ξ1(∅)))

Uq

332

Example: Computation of [[z EU y]]K (4/4)

{y,z}
s2

s0
{x,y,z}

s4
{y}

{z}
s6

s3
{x}

s1
{x,y}

s7
{ }

s5
{x,z}

ξ3(∅) = µ(y) ∪ (µ(z) ∩ pre(ξ2(∅))) = ξ2(∅)

[[z EU y]]K = {s0, s1, s2, s4, s5, s6}

333

Example: Dekker’s mutex algorithm

The next slides show a Petri net implementing a (fair) mutual exclusion protocol
for two processes (red and blue), and the reachability graph of the net.

The places n1, n2 denote the non-critical sections, c1, c2 the critical sections,
and t1, t2 indicate that a process is trying to enter its critical section.

For space reason, the arcs to places in the middle (f1, f2, p) were omitted.

In the reachability graph, f1 and f2 are only mentioned when true.

334

Example: Petri net

f2’=true

(f1=false or p=2)
and f1=f1’ and p’=2

f2’=false
and p’=1

n2

t2

"do some work"

c2

f1’=true

(f2=false or p=1)
and f2=f2’ and p’=1

f1’=false
and p’=2

n1

t1

c1

"do some work"

false
{true,false}

f2

1
{1,2}

p

false
{true,false}

f1

335

Example: Reachability graph

n1, n2, p=1

t1, n2, f1, p=1 n1, t2, f2, p=1

t1, t2, f1, f2, p=1c1, n2, f1, p=1 n1, c2, f2, p=2

n1, n2, p=2 c1, t2, f1, f2, p=1 t1, c2, f1, f2, p=2

t1, n2, f1, p=2 n1, t2, f2, p=2

t1, t2, f1, f2, p=2

m0

m1 m2

m3 m5

m8m7m6

m4

m10m9

m11

336

Specification

The satisfaction mutual exclusion property is directly observable in the
reachability graph. Moreover, we might be interested in the following property:

“Whenever a process wants to enter a critical section, it will eventually
succeed in doing so.”

A plausible formulation in CTL is as follows:

AG(t1→ AF c1) and AG(t2→ AF c2)

For this, we extend the reachability graph into a Kripke structure with four atomic
propositions:

c1 with µ(c1) := {m3,m7}; t1 with µ(t1) := {m1,m4,m8,m9,m11}

c2 with µ(c2) := {m5,m8}; t2 with µ(t2) := {m2,m4,m7,m10,m11}

337

Checking the formula

We rewrite the first formula into the minimal syntax:

¬
(
true EU (t1 ∧ EG¬c1)

)
(The second formula is analogous, so we consider just the first.)

When checking this formula, we shall observe that it does not hold – the system
may remain in states m5 and m8 forever.

This happens, when one process remains in its critical section forever.

338

Fairness

Thus, the property is not satisfied because the blue process may exhibit an
“unfair” behaviour, i.e. does not leave the critical section.

Can we – in analogy to LTL – consider only those runs that satisfy some fairness
constraint (here: processes eventually leave their critical section)?

Answer 1: No. This is not expressible in CTL (e.g., (AGAF fair)→ φ won’t do).

Answer 2: Yes. We can extend CTL accordingly.

339

CTL with fairness

Let K and φ be the same as before. Additionally, let F1, . . . ,Fn ⊂ S be fairness
constraints.

In the following, we shall call a path fair iff it visits each fairness constraint
infinitely often.

In our example, the fairness constraints would be as follows:

F1 = S \ µ(c1)

F2 = S \ µ(c2)

340

Our problem is to compute [[φ]]K for the case where EG and EU quantify only
over “fair” paths. We introduce modified operators EGf and EUf with the
following meaning:

T |= EGf φ iff T has a fair infinite path r = v0 → v1 → . . .,

where for all i ≥ 0 we have: dvie |= φ

T |= φ1 EUf φ2 iff T has a fair infinite path r = v0 → v1 → . . .,

s.t. ∃i : dvie |= φ2 ∧ ∀k < i : dvke |= φ1

341

We make the following observations:

(1) ρ is fair iff ρi is fair for all i ≥ 0.

(2) ρ is fair iff there is a fair suffix ρi for some i ≥ 0.

Thus, we can rewrite EUf as follows:

φ1 EUf φ2 ≡ φ1 EU (φ2 ∧ EGf true)

It therefore suffices to find a modified algorithm for EGf .

342

An algorithm for [[EGf p]]K

1. Let Kp be the restriction of K to the states µ(p).

2. Compute the SCCs of Kp.

3. Find the non-trivial SCCs intersecting all fairness constraints.

4. [[EGf p]]K contains exactly those states in Kp from which such an SCC is
reachable.

s |= EG pf

F

−statesp

Complexity: still linear in |K|.

343

Comparison of CTL and LTL

Many properties can be expressed equivalently in both CTL and LTL, e.g.

Invariants (e.g., “p never holds.”)

AG¬p or G¬p

Reactivity (“Whenever p happens, eventually q will happen.”)

AG(p → AF q) or G(p → F q)

345

CTL considers the whole computation tree, LTL the set of runs. Hence, CTL can
reason about the branching behaviour (the possibilities), which LTL cannot.
Examples:

The CTL formula AGEF p (“reset”) is not expressible in LTL.

The CTL formula AFAX p distinguishes the following structures, but the LTL
formula FX p does not:

{p}

{p}

{p}

{p}

346

However, the syntactic restriction in CTL (paired quantifiers and path operators)
means that, in turn, some LTL properties are inexpressible in CTL. Hence, the
two logics are incomparable in their expressive power.

The LTL property FG p is inexpressible in CTL:

s0

{ }{p}

s1 s2

{p}

K |= FG p but K 6|= AFAG p

(Emerson, Halpern 1986)

347

Computational complexity

CTL model checking: O(|K| · |φ|)
LTL model checking: O(|K| · 2|φ|)

Does this mean that CTL model checking is more efficient?
(for properties expressible in both logics)

Answer: not necessarily

LTL enables on-the-fly model checking and partial-order reduction

CTL: whole structure must be constructed and traversed multiple times

CTL: instead of p.o.reduction→ efficient data structures for sets (to be done)

348

Literature

More about this topic:

M. Vardi, Branching vs. Linear Time: Final Showdown, 2001

Specification Patterns Database:

http://patterns.projects.cis.ksu.edu/

349

Tool demonstration: SMV

350

The SMV system

SMV was designed by Ken McMillan (CMU, 1992)

Model-checking tool for CTL (with fairness)

Useful for describing finite structures, especially synchronous or asynchronous
circuits.

SMV was the first tool suitable for verifying large hardware systems (by
employing BDDs).

351

Information/downloading SMV

In the world-wide web:

http://www-2.cs.cmu.edu/~modelcheck/smv.html

(includes extensive manual)

352

CTL model checking in SMV

The problem: Given K (with multiple initial states) and φ,
do all initial states of K satisfy φ?

In SMV, structures consist of “modules” and “processes”, that manipulate a
number of variables.

Transitions are specified by declaring their ‘next’ value, depending on their
current value.

Atomic propositions may talk about variables and are interpreted ‘naturally’ (as in
Spin).

Demonstration: short.smv

353

Syntax example (1/3)

-- This is a comment.

MODULE main

VAR

x : boolean;

y : {q1,q2};

-- to be continued

Remarks:

• Data types: boolean, integer, enumerations

• all variable with finite range

354

Syntax example (2/3)

ASSIGN

init(x) := 1; -- initial value

next(x) := case -- transition relation

x: 0;

!x: 1;

esac;

next(y) := case

x & y=q1: q2;

x & y=q2: {q1,q2}; -- non-determinism

1 : y;

esac;

355

Syntax example: Remarks

Initial states are given by the init predicates; uninitialized variables can take any
initial value.

The transitions of the system the synchronous composition of the next
predicates.

case expressions are evaluated top to bottom, the first case that fits is taken.

Non-determinism can be introduced by giving multiple successor values.

356

The resulting structure

"!

"!

"!

"!

6 6

?

QQQQQQQQQQs

�����������+

? ?
x = 1

y = q2y = q1

x = 1

x = 0

y = q1 y = q2

x = 0

357

Syntax example (3/3)

-- Is q1 always reachable from q2?

SPEC AG (y=q2 -> EF y=q1)

-- Is x true infinitely often in every execution?

SPEC AG AF x

Remarks:

• One can give multiple CTL formulae, SMV will check them all one by one.

358

Modules (1/2)

Modules may be parametrized. Example:

MODULE counter_cell(carry_in)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value) := (value + carry_in) mod 2;

DEFINE

carry_out := value & carry_in;

Remark:

• The parameter of this module is carry in.

• DEFINE declares a ‘macro’.

359

Modules (2/2)

Modules may be instantiated like variables:

MODULE main

VAR

bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

This system behaves like a three-bit counter, i.e. “counts” from 0 to 7 and then
resets.

Remark: There must be one module named main, and SMV will evaluate the
specifications of this module.

Demonstration: counter.smv

360

Asynchronous systems

All examples up to now were synchronous, i.e. all variables and modules take a
transition at the same time.

When modules are instantiated with the keyword process (see next example),
then in each step one process makes a step while the others do nothing
(asynchronous composition, interleaving).

Alternatively, no process may make a step (“stuttering”).

361

Example: Mutex

var turn : {0,1};

while true do
q0 non-critical section
q1 await (turn=0);
q2 critical section
q3 turn:=1;

od

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

while true do
r0 non-critical section
r1 await (turn=1);
r2 critical section
r3 turn:=0;

od

362

Mutex in SMV (1/2)

MODULE main

VAR

turn: boolean;

p0: process p(0,turn);

p1: process p(1,turn);

SPEC

AG !(p0.state = critical & p1.state = critical)

363

Mutex in SMV (2/2)

MODULE p (nr,turn)

VAR

state: {non_critical, critical};

ASSIGN

init(state) := non_critical;

next(state) := case

state = non_critical & turn != nr: non_critical;

state = non_critical & turn = nr : critical;

state = critical: {critical,non_critical};

esac;

next(turn) := case

state = critical & next(state) = non_critical: !nr;

1 : turn;

esac;

364

Fairness

In the mutex example, the following specification is evaluated to false.

SPEC

AG (p0.state = non_critical -> AF p0.state = critical)

This is because SMV allows the system to “stutter” forever (i.e. to do nothing).
One can exclude such behaviours using the keyword FAIRNESS, e.g. as follows:

FAIRNESS

p0.running & p1.running

The internal variable running becomes true whenever the corresponding
process makes a step. With this addition, the verification succeeds.

365

Part 12: Binary Decision Diagrams

Literature

Some pointers:

H.R. Andersen, An Introduction to Binary Decision Diagrams, Lecture notes,
Department of Information Technology, IT University of Copenhagen

URL:
https://www.cmi.ac.in/ madhavan/courses/verification-2011/andersen-bdd.pdf

or https://www.cs.utexas.edu/ isil/cs389L/bdd.pdf

Libraries:

CUDD, BuDDy, JavaBDD, JDD, JBDD. . .

parallel: ParaBDD, Sylvan

367

Set representations

As we have seen, the solution to the model-checking problem for CTL can be
expressed by operations on sets:

states satisfying some atomic proposition: µ(p) for p ∈ AP

states satisfying (sub)formulae: [[ψ]]K

computation by set operations: pre, ∩, ∪, . . .

How can such sets be represented:

explicit list: S = {s1, s2, s4, . . .}

symbolic representation: compact notation or data structure

368

Symbolic representation

There are many ways of representing sets symbolically. Some are commonly
used in mathematics:

Intervals: [1,10] for {1,2,3,4,5,6,7,8,9,10}

Characterizations: “odd numbers” for {1,3,5, . . .}

Every symbolic representation is suitable for some sets and less so for others
(for instance, intervals for odd numbers).

We are interested in a data structure suitable for representing sets of states in
hardware systems, and where the necessary operations (pre, ∩ etc) can be
implemented efficiently.

369

In the following, we assume that states can be represented as Boolean vectors

S = {0,1}m for some m ≥ 1

Example:

1-safe Petri nets (every place marked with at most one token)

circuits (all inputs and outputs are 0 or 1)

Remark: In general, the elements of any finite set can be represented by
Boolean vectors if m is chosen large enough. (However, this may not be
adequate for all sets.)

370

Example 1: Petri-net

Consider the following Petri net:

p1

p6

t1 t2 t3

p2 p4

p3 p5

A state can be written as (p1, p2, . . . , p6), ewhere pi , 1 ≤ i ≤ 6 indicates
whether there is a token on Pi .

Initial state(1,0,1,0,1,0);
other reachable states are, e.g., (0,1,1,0,1,0) or (1,0,0,1,0,1).

371

Example 2: Circuit

Half-adder:

carryx2

x1 sum

The circuit has got two inputs (x1, x2) and two outputs (carry , sum). Their
admissible combinations can be denoted by Boolean 4-tuples, e.g. (1,0,0,1)

(x1 = 1, x2 = 0, carry = 0, sum = 1) is a possible combination.

372

Characteristic functions

Let C ⊆ S = {0,1}m.
(i.e., a set of Boolean vectors.)

The set C is uniquely defined by its characteristic function fC : S → {0,1} given
by

fC(s) :=

1 if s ∈ C
0 if s /∈ C

Remark: fC is a Boolean function with m inputs and therefore corresponds to a
formula F of propositional logic with m atomic propositions.

373

The characteristic function of the admissible combinations in Example 2
corresponds to the following formula of propositional logic:

F ≡
(
carry ↔ (x1 ∧ x2)

)
∧
(
sum ↔ (x1 ∨ x2) ∧ ¬carry

)

In the following, we shall treat

sets of states (i.e. sets of Boolean vectors)

characteristic functions

formulae of propositional logic

simply as different representations of the same objects.

374

Representing formulae

Truth table:

x1 x2 carry sum F

0 0 0 0 1

0 0 0 1 0

· · ·
0 1 0 1 1

· · ·

A truth table is obviously not a compact representation.

However, we use it as a starting point for a graphical, more compact
representation.

375

Binary decision graphs

Let V be a set of variables (atomic propositions) and < a total order on V , e.g.

x1 < x2 < carry < sum

A binary decision graph (w.r.t. <) is a directed, connected, acyclic graph with the
following properties:

there is exactly one root, i.e. a node without incoming arcs;

there are at most two leaves, labelled by 0 or 1;

all non-leaves are labelled with variabls from V ;

every non-leaf has two outgoing arcs labelled by 0 and 1;

if there is an edge from an x-labelled node to a y -labelled node, then x < y .

376

Example 2: Binary decision graph (here: a full tree)

0 0 0 0 0 0 0 0

x2

carrycarry

sumsum sum sum sum sum sum sum

carrycarry

x1

x2

1 0

1 0 01

1 0 1 0 1 0 01

1 0 1 0 1 0 1 0 1 0010101

0 1 0 0 11 0 1

Paths ending in 1 correspond to vectors whose entry in the truth table is 1.

377

Binary decision diagrams

A binary decision diagram (BDD) is a binary decision graph with two additional
properties:

no two subgraphs are isomorphic;

there are no redundant nodes, where both outgoing edges lead to the same
target node.

We also allow to omit the 0-node and the edges leading there.

Remarks: On the following slides, the blue edges are meant to be labelled by 1,
the red edges by 0.

378

Example 2: Eliminate isomorphic subgraphs (1/4)

0 0 0 0 0 0 0 0

x2

carrycarry

sumsum sum sum sum sum sum sum

carrycarry

x1

x2

0 1 0 0 11 0 1

Alle 0- und 1-Knoten werden zusammengefasst.

379

Example 2: Eliminate isomorphic subgraphs (2/4)

x2

carrycarry

sumsum sum sum sum sum sum sum

carrycarry

x1

x2

01

0-nodes and 1-nodes merged, respectively.

380

Example 2: Eliminate isomorphic subgraphs (3/4)

x2

carrycarry

sum sum sum

carrycarry

x1

x2

01

Merged the isomorphic sum-nodes.

381

Example 2: Eliminate isomorphic subgraphs (4/4)

x2

carrycarry

sum sum sum

carry

x1

x2

01

No isomorphic subgraphs are left→ we are done.

382

Example 2: Remove redundant nodes (1/2)

x2

carrycarry

sum sum sum

carry

x1

x2

01

Both edges of the right sum-node point to 0.

383

Example 2: Remove redundant nodes (2/2)

x2

carrycarry

sum sum

carry

x1

x2

01

No more redundant nodes→ we are done.

384

Example 2: Omit 0-node

x2

carrycarry

sum sum

carry

x1

x2

1

Optionally, we can remove the 0-node and edges leading to it, which makes the
representation clearer.

385

Semantics of a BDD

Let B be a BDD with order x1 < . . . < xn. Let PB be the set of paths in B,
leading from the root to the (unique) 1-node.

Let p ∈ PB be such a path, e.g. xi1

bi1−→ . . .
bim−→ 1. Then the “meaning” of p

(denoted [[p]]) is the conjunction of all xij with bij = 1 and all ¬xij with bij = 0

(where j = 1, . . . ,m).

We then say that B represents the following PL formula:

F =
∨

p∈PB

[[p]]

386

Preview

In the following, we shall investigate operations on BDDs that are needed for CTL
model checking.

Construction of a BDD (from a PL formula)

Equivalence check

Intersection, complement, union

Relations, computing predecessors

387

Propositional logic with constants

In the following, we will consider formulae of propositional logic (PL), extended
with the constants 0 and 1, where:

0 is an unsatisfiable formula;

1 is a tautology.

388

Substitution

Let F and G be formulae of PL (possibly with constants), and let x be an atomic
proposition.

F [x/G] denotes the PL formula obtained by replacing each occurrence of x in F
by G.

In particular, we will consider formulae of the form F [x/0] and F [x/1].

Example: Let F = x ∧ y . Then F [x/1] = 1 ∧ y ≡ y and F [x/0] = 0 ∧ y ≡ 0.

389

If-then-else

Let us introduce a new, ternary PL operator. We shall call it ite (if-then-else).

Note: ite does not extend the expressiveness of PL, it is simply a convenient
shorthand notation.

Let F ,G,H be PL formulae. We define

ite(F ,G,H) := (F ∧ G) ∨ (¬F ∧ H).

The set of INF formulae (if-then-else normal form) is inductively defined as
follows:

0 and 1 are INF formulae;

if x is an atomic proposition and G,H are INF formulae, then ite(x ,G,H) is
an INF formula.

390

Shannon partitioning

Let F be a PL formula and x an atomic proposition. We have:

F ≡ ite(x ,F [x/1],F [x/0])

Proof: In the following, G denotes the right-hand side of the equivalence above.
Let ν be a valuation s.t. ν |= F . Either ν(x) = 1, then ν is also a model of
F [x/1] and of x and therefore also of G. The case ν(x) = 0 is analogous. For
the other direction, suppose ν |= G. Then either ν(x) = 1 and the “rest” of ν is
a model of F [x/1]. Then, however, ν will be a model for any formula in which
some of the ones in F [x/1] are replaced by x , in particular also for F . The case
ν(x) = 0 is again analogous.

Remark: G is called the Shannon partitioning of F .

Corollary: Every PL formula is equivalent to an INF formula.
(Proof: apply the equivalence above multiple times.)

391

Construction of BDDs

We can now solve our first BDD-related problem: Given a PL formula F and
some ordering of variables <, construct a BDD w.r.t. < that represents F .

If F does not contain any atomic propositions at all, then either F ≡ 0 or F ≡ 1,
and the corresponding BDD is simply the corresponding leaf node.

Otherwise, let x be the smallest variable (w.r.t. <) occurring in F . Construct
BDDs B0 and B1 for F [x/1] and F [x/0], respectively (these formulae have one
variable less than F).

Because of the Shannon partitioning, F is representable by a binary decision
graph whose root is labelled by x and whose subtrees are B0 and B1. To obtain
a BDD, we check whether B0 and B1 are isomorpic; if yes, then F is represented
by B0. Otherwise we merge all isomorphic subtrees in B0 and B1.

392

Example: BDD construction

Consider again the formula from Example 2:

F ≡
(
carry ↔ (x1 ∧ x2)

)
∧
(
sum ↔ (x1 ∨ x2) ∧ ¬carry

)

We have, e.g.:

F [x1/0] ≡ ¬carry ∧ (sum↔ x2)

F [x1/1] ≡ (carry ↔ x2) ∧ (sum↔ ¬carry)

F [x1/0][x2/0] ≡ ¬carry ∧ ¬sum

F [x1/0][x2/1] ≡ F [x1/1][x2/0] ≡ ¬carry ∧ sum

F [x1/1][x2/1] ≡ carry ∧ ¬sum

393

Example: BDD construction

By applying the construction, we obtain the same BDD as before:

x2

carrycarry

sum sum

carry

x1

x2

1

Remark: Obviously, we can also obtain an INF formula from each BDD.

394

BDDs are unique

Remark: The result of the previously given construction is unique (up to
isomorphism).

In other words, given F and <, there is (up to isomorphism) exactly one BDD
that respects < and represents F .

Remark: Different orderings still lead to different BDDs.
(possibly with vastly different sizes!)

395

Example: Variable orderings

Recall Example 1 (the Petri net), and let us construct a BDD representing the
reachable markings:

p1

p6

t1 t2 t3

p2 p4

p3 p5

Remark: P1 is marked iff P2 is not, etc.

396

The corresponding BDD for the ordering p1 < p2 < p3 < p4 < p5 < p6:

p1

p2 p2

p3

p4p4

p5

p6 p6

1

397

Remarks:

If we increase the number of components from 3 to n (for some n ≥ 0), the
size of the corresponding BDD will be linear in n.

In other words, a BDD of size n can represent 2n (or even more) valuations.

However, the size of a BDD strongly depends on the ordering!
Example: Repeat the previous construction for the ordering

p1 < p3 < p5 < p2 < p4 < p6.

398

Equivalence test

To implement CTL model checking, we need a test for equivalence between
BDDs (e.g., to check the termination of a fixed-point computation).

Problem: Given BDDs B and C (w.r.t. the same ordering) do B and C represent
equivalent formulae?

Solution: Test whether B and C are isomorphic.

Special cases:

Unsatisfiability test: Check if the BDD consists just of the 0 leaf.

Tautology test: Check if the BDD consists just of the 1 leaf.

399

Implementing BDDs with hash tables

Suppose we want to write an application in which we need to manipulate multiple
BDDs.

Efficient BDDs implementations exploit the uniqueness property by storing all
BDD nodes in a hash table. (Recall that each node is in fact the root of some
BDD.)

Each BDD is then simply represented by a pointer to its root.

Initially, the hash table has only two unique entries, the leaves 0 and 1.

400

Every other node is uniquely identified by the triple (x ,B0,B1), where x is the
atomic proposition labelling that node and B0,B1 are the subtrees of that node,
represented by pointers to their respective roots.

Usually, one implements a function mk(x ,B0,B1) that checks whether the hash
table already contains such a node; if yes, then the pointer to that node is
returned, otherwise a new node is created.

A multitude of BDDs is then stored as a “forest” (a DAG with multiple roots).

Problem: garbage collection (by reference counting)

401

Equivalence test II

Let us reconsider the equivalence-checking problem.
(Given two BDDs B and C, do B and C represent equivalent formulae?)

If B and C are stored in hash tables (as described previously), then B and C are
representable by pointers to their roots.

Due to the uniqueness property, one then simply has to check whether the
pointers are the same (a constant-time procedure).

402

Logical operations I: Complement

Let F be a PL formula and B a BDD representing F .

Problem: Compute a BDD for ¬F .

Solution: Exchange the two leaves of B.

(Caution: This is not quite so simple with the hash-table implementation.)

403

Logical operations II: Disjunction/union

Let F ,G be PL formulae and B,C the corresponding BDDs (with the same
ordering).

Problem: Compute a BDD for F ∨ G from B and C.

We have the following equivalence:

F∨G ≡ ite(x , (F ∨ G)[x/1], (F ∨ G)[x/0]) ≡ ite(x ,F [x/1] ∨ G[x/1],F [x/0] ∨ G[x/0])

If x is the smallest variable occurring in either F or G, then
F [x/1],F [x/0],G[x/1],G[x/0] are either the children of the roots of B and C
(or the roots themselves).

404

We construct a BDD for disjunction according to the following, recursive strategy:

If B and C are equal, then return B.

If either B or C are the 1 leaf, then return 1.

If either B or C are the 0 leaf, then return the other BDD.

Otherwise, compare the two variables labelling the roots of B and C, and let x
be the smaller among the two (or the one labelling both).

If the root of B is labelled by x , then let B1,B0 be the subtrees of B;
otherwise, let B1,B0 := B. We define C1,C0 analogously.

Apply the strategy recursively to the pairs B1,C1 and B0,C0, yielding BDDs
E and F . If E = F , return E , otherwise mk(x ,E ,F).

405

Logical operations III: Intersection

Let F ,G be PL formulae and B,C the corresponding BDDs (with the same
ordering).

Problem: Compute a BDD for F ∧ G from B and C.

Solution: Analogous to union, with the rules for 1 and 0 leaves adapted
accordingly.

Complexity: With dynamic programming: O(|B| · |C|) (every pair of nodes at
most once).

406

Computing predecesors

In the following, we derive a strategy for computing the set

pre(M) = { s | ∃s′ : (s, s′) ∈ → ∧ s′ ∈ M }.

Note that the relation→ is a subset of S × S whereas M ⊂ S.

We represent M by a BDD with variables y1, . . . , ym.

→ will be represented by a BDD with variables x1, . . . , xm and y1, . . . , ym (states
“before” and “after”).

407

Remark: Every BDD for M is at the same time a BDD for S ×M!

Thus, we can rewrite pre(M) as follows:

{ s | ∃s′ : (s, s′) ∈ → ∩ (S ×M)}

Then, pre reduces to the operations intersection and existential abstraction.

408

Example

Let us consider the following Petri net with just one transition:

p1 t1

p2

p3

409

The BDD Ft1 describes the effect of t1, where p1, p2, p3 describe the state
before and p′1, p

′
2, p
′
3 the state after firing t1.

p3’

p3

p2

p1’

p2’

p1

p2’

1

410

Existential abstraction

Existential abstraction w.r.t. an atomic proposition x is defined as follows:

∃x : F ≡ F [x/0] ∨ F [x/1]

I.e., ∃x : F is true for those valuations that can be extended with a value for x in
such a way that they become models for F .

Example: Let F ≡ (x1 ∧ x2) ∨ x3. Then

∃x1 : F ≡ F [x1/0] ∨ F [x1/1] ≡ (x3) ∨ (x2 ∨ x3) ≡ x2 ∨ x3

By extension, we can consider existential abstraction over sets of atomic
propositions (abstract from each of them in turn).

411

Example: Existential abstraction

(a) Ft1[p′2/1]; (b) Ft1[p′2/0]; (c) ∃p′2 : Ft1; (d) ∃p′1, p
′
2, p
′
3 : Ft1

p3’

p3

p2

p1’

p3’

p3

p2

p1’

p3’

p3

p1’

p1

p3

p2’

p1

p2’ p2’

p1

p2’

p1

11 1 1

(a) (b) (c) (d)

412

BDDs with complement arcs

Implementation with hash tables makes negation a costly operation.

Therefore, BDD libraries often use a modification of BDDs, called BDDs with
complement arcs (CBDDs).

In a CBDD, every edge is equipped with an additional bit. If the bit is true, then it
means that the edge should really lead to the negation of its target.

Representation: if the bit is set, we put a filled circle onto the edge.

413

CBDD: Example

x

y y

z

1

The red arc leaving the z-labelled node has its negation bit set, it therefore
effectively leads to 0.

414

CBDD: Example

x

y y

z

1

For this reason, the z-labelled node is not redundant.
The 0-leaf can be omitted altogether.

415

CBDD: Example

x

y y

z

1

The left y -labelled node represents the formula ¬y ∧ ¬z.

416

CBDD: Example

x

y y

z

1

The pointer to the root is also equipped with a negation bit
(false in this case).

417

Remarks

A valuation ν is a model of the formula represented by a CBDD iff the number of
negations on the path corresponding to ν is even (including the pointer to the
root).

Negation with CBDDs: trivial, invert the negation bit of the pointer to the root
(constant-time operation).

Implementation (e.g., in the CUDD library): coded into the least significant bit of
the pointer

Problem: CBDDs (as presented until now) are not unique!

418

CBDDs are not (yet) unique

x

1

x

1

Both of the CBDDs shown above represent the formula x .

419

Canonical form

To ensure uniqueness, one can additionally prohibit negation bits on 0-labelled
edges.

For this, we exploit the following equivalence:

ite(x ,F ,¬G) ≡ ¬ite(x ,¬F ,G)

Given any CBDD, one can eliminate negated 0-labelled edges by inverting all the
negation bits on those edges that are incident with its source node (starting at
the leaves, finishing with the root).

420

Canonical form

x

y y

z

1

x

y y

z

1

The CBDD shown on the right represents the same formula as before (on the
lect) and does not have any negated 0-labelled edges.

421

LTL with BDDs

Question: Can one implement also LTL model checking using BDDs?

Answer: Yes and no (worst-case: quadratical, but works ok in practice).

Problems: BDD not compatible with depth-first search, combination with
partial-order reduction difficult.

422

Symbolic algorithms for LTL

Idea: Find non-trivial SCCs with an accepting state, then search backwards for
an initial state.

Algorithms: Emerson-Lei (EL), OWCTY

423

Emerson-Lei (1986)

1. Assign to M the set of all states.

2. Let B := M ∩ F .

3. Compute the set C of states that can reach elements of B.

4. Let C := pre(C).

5. Let M := C.

6. If M has changed, then go to step 2, otherwise stop.

424

One-Way-Catch-Them-Young

(Hardin et al 1997, Fisler et al 2001)

Like EL, but step 4 is repeated until C does not change any more.

425

EL and OWCTY

In the upper case, OWCTY is superior, in the lower case EL is.

In practice, OWCTY appears to work better.

426

Part 13: Abstraction

427

Example 1 (loop)

Consider the following program with three numeric variables x , y , z.

`1: y = x+1;

`2: z = 0;

`3: while (z < 100) z = z+1;

`4: if (y < x) error;

Question: Is the error location reachable?

428

Example 2 (Sorting)

Another program with three numeric variables x , y , z.

`1: if x > y then swap x,y else skip;

`2: if y > z then swap y,z else skip;

`3: if x > y then swap x,y else skip;

`4: skip

Assumption: initially, x , y , z are all different

Question: Are x , y , z sorted in ascending order when reaching `4?

429

Question 3 (Device driver)

C code for Windows device driver

Operations on a semaphor: lock, release

Lock and release must be used alternatingly

430

Abstraction

Idea: throw away (abstract from) “unimportant” information

Handling infinite state spaces

Reduce (large) finite problems to smaller ones

Alternative point of view: merge “equivalent” states

431

Example 1

Omit concrete values of x,y,z; retain only the following information: program
counter, predicate y < x

Resulting (abstract) Kripke structure:

l1
y >= x

l1
y < x

l2
y >= x

l3
y >= x

l4
y >= x

Result: `4 is reachable only with y ≥ x ; the error will not happen.

432

Example 2

Omit concrete values of x,y,z; retain only program counter and permutation of
x , y , z

l2
xyz

l3
xyz

l2
xzy

l1
xzy

l1
yzx

l2
zxy

l1
zxy

l1
zyx

l1
xyz

l1
yxz

l3
yxz

l4
xyz

Result: `4 is reachable only with xyz; no error.

433

Questions: What is the logical relation between the original programs and their
abstract versions? What do the abstract versions really say about the original
programs?

In Example 1, the error is unreachable in both the original and the abstract
version.

However, in Example 1, the original structure terminates but the abstract
version does not.

Which conditions must hold for the abstract structure in order to draw meaningful
conclusions about the original structure?

434

Simulation

Let K1 = (S,→1, s0,AP, ν) and K2 = (T ,→2, t0,AP, µ) be two Kripke
structures (S,T are possibly infinite), and let H ⊆ S × T be a relation.

H is called a simulation from K1 to K2 iff

(i) (s0, t0) ∈ H;

(ii) for all (s, t) ∈ H we have: ν(s) = µ(t);

(iii) if (s, t) ∈ H and s →1 s′, then there exists t ′ such that t →2 t ′ and
(s′, t ′) ∈ H.

We say: K2 simulates K1 (written K1 ≤ K2) if such a simulation H exists.

435

Intuition: K2 can do anything that is possible in K1.

a

b c

ed

f

ki

K2

g

K1

K2 simulates K1 (with H = {(a, f), (b, g), (c, g), (d , i), (e, k)}).

However,: K1 does not simulate K2!

436

Bisimulation

A relation H is called a bisimulation between K1 and K2 iff H is a simulation from
K1 to K2 and { (t , s) | (s, t) ∈ H } is a simulation from K2 to K1.

We say: K1 and K2 are bisimilar (written K1 ≡ K2) iff such a relation H exists.

437

Careful: In general, K1 ≤ K2 and K2 ≤ K1 do not imply K1 ≡ K2!

a

b c

ed

f

ki

K2

g

K1

438

(Bi-)Simulation and model checking

Let K1 ≤ K2 and φ an LTL formula.

Then we have: K2 |= φ implies K1 |= φ.

Let K1 ≡ K2 and φ a CTL or LTL formula.

Then we have: K1 |= φ iff K2 |= φ.

439

Existential abstraction

Let K = (S,→, r ,AP, ν) be a Kripke structure (concrete structure).

Let ≈ be an equivalence relation on S such that for all s ≈ t we have
ν(s) = ν(t) (we say: ≈ respects ν).

Let [s] := { t | s ≈ t } denote the equivalence class of s;
[S] denotes the set of all equivalence classes.

The abstraction of S w.r.t. ≈ denotes the structure K′ = ([S],→′, [r],AP, ν′),
where

[s]→′ [t] for all s → t ;

ν′([s]) = ν(s) (this is well-defined!).

440

Example

Consider the Kripke structure below:

441

States partitioned into equivalence classes:

442

Abstract structure obtained by quotienting:

443

Let K′ be a structure obtained by abstraction from K.

Then K ≤ K′ holds.

Thus, if K′ satisfies some LTL formula, so does K.

444

What happens if ≈ does not respect ν?

{p} { }
{p}

K K’

Then K 6≤ K′ does not hold.

Example: The abstraction satisfies G p, the concrete system does not.

445

Let K′ be a structure obtained by abstracting K.

Then K ≤ K′ holds; thus, if K′ satisfies some LTL formula, then so does K.

However, if K′ 6|= φ, then K |= φ may or may not hold!

446

Abstraction gives rise to additional paths in the system:

Every concrete run has got a corresponding run in the abstraction . . .

447

Abstraction gives rise to additional paths in the system:

. . . but not every abstract run has got a corresponding run in the concrete system.

448

Suppose that K′ 6|= φ, where ρ is a counterexample.

Check whether there is a run in K that “corresponds” to ρ.

If yes, then K 6|= φ.

If no, then we can use ρ to refine the abstraction; i.e. we remove some
equivalences from the relation H, introducing additional distinct states in K′

so that ρ disappears.

The refinement can be repeated until a definite answer for K |= φ (positive or
negative) can be determined. This technique is called counterexample-guided
abstraction refinement (CEGAR) [Clarke et al., 2000].

449

The abstraction-refinement cycle

Input: K, φ

Compute K’

K’ |=

yes

K |=

yes
K |= φ

φ

φ?

Determine
Refine

no, counterexample ρ

realizable in K?ρ

no

450

Simulation of ρ

Problem: Given a counterexample ρ, is there a run corresponding to ρ in K?

Solution: “Simulate” ρ on K.

Remark: Any counterexample ρ can be partitioned into a finite stem and a finite
loop, i.e. ρ = wSwω

L for suitable wS,wL.

Case distinction: The simulation may fail in the stem or in the loop.

451

Example 1: G¬black

s1

s2

s3
s4

s6
s7

s5

a1
a2

a3
a4

s9

s8

Abstraction yields a counterexample with stem a1a2a3a4 and loop a4.

452

Simulating the stem

Let wS = b0 · · · bk .

Start with S0 = {r}. (We have b0 = [r].)

For i = 1, . . . , k , compute Si = { t | t ∈ bi ∧ ∃s ∈ Si−1 : s → t }.

If Sk 6= ∅, then there is a concrete correspondence for wS.

If Sk = ∅: Find the smallest index ` with S` = ∅: The refinement should
distinguish the states in S`−1 and those b`−1-states that have immediate
successors in b`.

453

Example: wS = a1a2a3a4

S0 = {s2}, S1 = {s4}, S2 = {s5}, S3 = ∅.

s1

s2

s3

s4

s5

s6

s8

s9

s7

In the next refinement, s5 and s7 must be distinguished.

Possible new equivalence classes: {s5, s6}, {s7} or {s5}, {s6, s7}.

454

Next try: G¬black with refinement

s1

s2

s3
s4

s6
s7

s5

a1
a2

a4

s9

s8

a3’
a3

The new abstraction does not yield any counterexample; therefore, G¬black
also holds in the concrete system.

455

Example 2: FG red

s1

s2

s3
s4

s6
s7

s5

a1
a2

a3
a4

s9

s8

The abstraction yields a counterexample with stem a1a2 and loop a3a2.

456

Simulating a loop

Assume wS = b0 · · · bk , wL = c1 · · · c`

wS is simulated as before, however wL may have to be simulated multiple
times.

Let m be the size of the smallest equivalence class in wL:

m = min
i=1,...,`

|ci |

Then we simulate the path wSwm+1
L ; doing so, either the simulation will fail,

or we will discover a real counterexample.

Refinement: same as before.

457

Example: wS = a1a2, wL = a3a2, m = 2

s4

s3s5

s6

s7

s4

s3s5

s6

s7

s4

s3s5

s6

s7

s4

s3s1

s2

The simulation succeeds because there is a loop around s4.
Thus, there is a real counterexample, so K 6|= φ.

458

Reasons for infinite state-spaces

So far, we have dealt with finite-state systems. However, many interesting real
systems have infinitely many states.

Data: integers, reals, lists, trees, heap, . . .

Control: procedures, dynamic thread creation, . . .

Communication: unbounded message channels

Parameters: number of participants in a protocol, . . .

Time: discrete or continuous clocks

Some (not all!) of these features (or combinations thereof) lead to
Turing-powerful models of computation.

459

Part 14: Pushdown systems

460

Example 1

A small program (where n ≥ 1):

bool g=true;

void main() {
level1();

level1();

assume(g);

}
void leveln() {

g:=not g;

}

void leveli() {
for j:=1 to 8 do skip;

leveli+1();

leveli+1();

}

Question: Will g be true when the program terminates?

461

Example 1 has got finitely many states.
(The call stack is bounded by n.

Can be treated by “inlining” (replace procedure calls by a copy of the callee).

Inlining causes an exponential state-space explosion.

Inlining is inefficient: every copy of each procedure will be investigated
separately.

Inlining not applicable for recursive procedure calls.

462

Example 2: Recursive program (plotter)

procedure p;
p0: if ? then
p1: call s;
p2: if ? then call p; end if;

else
p3: call p;

end if
p4: return

procedure s;
s0: if ? then return; end if;
s1: call p;
s2: return;

procedure main;
m0: call s;
m1: return;

S = {p0, . . . , p4, s0, . . . , s2,m0,m1}∗, initial state m0

m0 s0 m1
s1 m1

m1 ε

p0 s2 m1

p3 s2 m1

p1 s2 m1

p0 p4 s2 m1

s0 p2 s2 m1

...

...

463

Example 2 has got infinitely many states.

Inlining not applicable!

Cannot be analyzed by naı̈vely searching all reachable states.

We shall require a finite representation of infinitely many states.

464

Example 3: Quicksort

void quicksort (int left, int right) {
int lo,hi,piv;

if (left >= right) return;

piv = a[right]; lo = left; hi = right;

while (lo <= hi) {
if (a[hi]>piv) {
hi = hi - 1;

} else {
swap a[lo],a[hi];

lo = lo + 1;

}
}
quicksort(left,hi);

quicksort(lo,right);

}

465

Question: Does Example 3 sort correctly? Is termination guaranteed?

The mere structure of Example 3 does not tell us whether there are infinitely
many reachable states:

finitely many if the program terminates

infinitely many if it fails to terminate

Termination can only be checked by directly dealing with infinite state sets.

466

A computation model for procedural programs

Control flow:

sequential program (no multithreading)

procedures

mutual procedure calls (possibly recursive)

Data:

global variables (restriction: only finite memory)

local variables in each procedure (one copy per call)

467

Pushdown systems

A pushdown system (PDS) is a triple (P,Γ,∆), where

P is a finite set of control states;

Γ is a finite stack alphabet;

∆ is a finite set of rules.

468

Rules have the form pA ↪→ qw , where p, q ∈ P, A ∈ Γ, w ∈ Γ∗.

q w’

p A w’

w

Like acceptors for context-free language, but without any input!

469

Behaviour of a PDS

Let P = (P,Γ,∆) be a PDS and c0 ∈ P × Γ∗.

With P we associate a transition system TP = (S,→, r) as follows:

S = P × Γ∗ are the states (which we call configurations);

we have pAw ′ → qww ′ for all w ′ ∈ Γ∗ iff pA ↪→ qw ∈∆;

r = c0 is the initial configuration.

470

Transition system of a PDS

pA ↪→ qB
pA ↪→ pC
qB ↪→ pD
pC ↪→ pAD
pD ↪→ pε

p,DDD q,BDD

p,AD

p,C

p,Aq,B

p,DC

p,DA ...

...

q,BD

p,CD

p,ADD

p,DD

p,D

p

...

p,DAD

p,DCD

p,DADD

...

...

...

...

471

Procedural programs and PDSs

P may represent the valuations of global variables.

Γ may contain tuples of the form (program counter, local valuations)

Interpretation of a configuration pAw :

global values in p, current procedure with local variables in A

“suspended” procedures in w

Rules:

pA ↪→ qB =̂ statement within a procedure

pA ↪→ qBC =̂ procedure call

pA ↪→ qε =̂ return from a procedure

472

Reachability in PDS

Let P be a PDS and c, c′ two of its configurations.

Problem: Does c →∗ c′ hold in TP?

Note: TP has got infinitely many (reachable) states.

Nonetheless, the problem is decidable!

473

Finite automata

To represent (infinite) sets of configurations, we shall employ finite automata.

Let P = (P,Γ,∆) be a PDS. We call A = (Γ,Q,P, δ,F) a P-automaton.

The alphabet of A is the stack alphabet Γ.

The initial states of A are the control states P.

We say that A accepts the configuration pw if A has got a path labelled by input
w starting at p and ending at some final state.

474

Let L(A) be the set of configurations accepted by A.

A set C of configurations is called regular iff there is some P-automaton A with
L(A) = C.

An automaton is normalized if there are no transitions leading into initial states.

Remark: In the following, we shall use the following notation:

pw ⇒ p′w ′ (in the PDS P) and p w→ q (in P-automata)

475

Reachability in PDS

Let pre∗(C) = { c′ | ∃c ∈ C : c′ ⇒ c } denote the predecessors of C,
and let post∗(C) = { c′ | ∃c ∈ C : c ⇒ c′ } the successors.

The following result is due to Büchi (1964):

Let C be a regular set and A be a (normalized) P-automaton accepting C.

If C is regular, then so are pre∗(C) and post∗(C).

Moreover, A can be transformed into an automaton accepting pre∗(C) resp.
post∗(C).

476

The basic idea (for pre)

Saturation rule: Add new transitions to A as follows:

If q w→ r currently holds in A and pA ↪→ qw is a rule, then add the
transition (p,A, r) to A.

Repeat this until no other transition can be added.

At the end, the resulting automaton accepts pre∗(C).

For post∗(C): similar procedure.

477

Automaton A for C

p

q

D D

B

q,BDD

p,AD

p,C

p,Aq,B

p,DC

p,DA ...

...

q,BD

p,CD

p,ADD

p,DD

p,D

p

...

p,DAD

p,DCD

p,DADD

...

...

...

...

p,DDD

478

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

Rule: pA ↪→ qB Path: q B→ s1 New path: p A→ s1

479

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

Rule: pA ↪→ qB Path: q B→ s1 New path: p A→ s1

480

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

A

Rule: pA ↪→ qB Path: q B→ s1 New path: p A→ s1

481

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

A

Rule: pC ↪→ pAD Path: p A→ s1
D→ s2 New path: p C→ s2

482

Extending A

If the right-hand side of a rule can be read, add the left-hand side.

p

D D

B

s2

s1q

C

A

Rule: pC ↪→ pAD Path: p A→ s1
D→ s2 New path: p C→ s2

483

Final result

p

D D

B

s2

s1q

A
A

C

C
D

Complexity:
O(|Q|2 · |∆|) time. q,BDD

p,AD

p,C

p,Aq,B

p,DC

p,DA ...

...

p,CD

p,ADD

p,DD

p,D

p

...

p,DAD

p,DCD

p,DADD

...

...

...

...

p,DDD

q,BD

484

Proof of correctness

We shall show:

Let B be the P-automaton arising from A by applying the saturation rule.
Then L(B) = pre∗(C).

Part 1: Termination

The saturation rule can only be applied finitely many times because no states
are added and there are only finitely many possible transitions.

Part 2: pre∗(C) ⊆ L(B)

Let c ∈ pre∗(C) and c′ ∈ C such that c′ is reachable from c in k steps. We
proceed by induction on k (simple).

485

Part 3: L(B) ⊆ pre∗(C)

Let→
i

denote the transition relation of the automaton after the saturation rule

has been applied i times.

We show the following, more general property: If p w→
i

q, then there exist p′w ′

with p′ w ′→
0

q and pw ⇒ p′w ′; if q ∈ P, then additionally w ′ = ε.

Proof by induction over i : The base case i = 0 is trivial.

Induction step: Let t = (p1,A, q′) be the transition added in the i-th
application and j the number of times t occurs in the path p w→

i
q.

Induction over j : Trivial for j = 0. So let j > 0.

486

There exist p2, p′, u, v ,w ′,w2 with the following properties:

(1) p u→
i−1

p1
A→
i

q′ v→
i

q (splitting the path p w→
i

q)

(2) p1A ↪→ p2w2 (pre-condition for saturation rule)

(3) p2
w2→
i−1

q′ (pre-condition for saturation rule)

(4) pu ⇒ p1ε (ind.hyp. on i)

(5) p2w2v ⇒ p′w ′ (ind.hyp. on j)

(6) p′ w ′→
0

q (ind.hyp. on j)

The desired proof follows from (1), (4), (2), and (5).
If q ∈ P, then the second part follows from (6) and the fact that A is normalized.

487

Example: post∗ (without proof)

If the left-hand side of a rule can be read, add the right-hand side.

p s2
C

Rule: pC ↪→ pAD Path: p C→ s2 New Path: p AD→ s2

488

Example: post∗ (without proof)

If the left-hand side of a rule can be read, add the right-hand side.

p s2
C

A D

Rule: pC ↪→ pAD Path: p C→ s2 New Path: p AD→ s2

489

LTL and Pushdown Systems

Let P = (P,Γ,∆) be a PDS with initial configuration c0, let TP denote the
corresponding transition system, AP a set of atomic propositions, and
ν : P × Γ∗ → 2AP . a valuation function.

TP , AP, and ν form a Kripke structure K; let φ be an LTL formula (over AP).

Problem: Does K |= φ?

Undecidable for arbitrary valuation functions!
(could encode undecidable decision problems in ν . . .)

However, LTL model checking is decidable for certain “reasonable” restrictions of
ν.

490

In the following, we consider “simple” valuation functions satisfying the following
restriction:

ν(pAw) = ν(pA), for all p ∈ P, A ∈ Γ, and w ∈ Γ∗.

In other words, the “head” of a configuration holds all information about
atomic propositions.

LTL model checking is decidable for such “simple” valuations.

491

Approach

Same principle as for finite Kripke structures:

Translate ¬φ into a Büchi automaton B.

Build the cross product of K and B.

Test the cross product for emptiness.

Note that the cross product is not a Büchi automaton in this case (e.g., it is not
finite).

492

Büchi PDS

The cross product is a new pushdown system Q, as follows:

Let P = (P,Γ,∆) be a PDS, p0w0 the initial configuration, and AP, ν as
usual.

Let B = (2AP,Q, q0, δ,F) be the Büchi automaton for ¬φ.

Construction of Q:

Q = (P × Q,Γ,∆′,P × F), where

(p, q)A ↪→ (p′, q′)w ∈∆′ iff

– pA ↪→ p′w ∈∆ and

– (q, L, q′) ∈ δ such that ν(pA) = L.

Initial configuration: (p0, q0)w0

493

Let ρ be a run of Q with ρ(i) = (pi , qi)wi .

We call ρ accepting if qi ∈ F for infinitely many values of i .

The following is easy to see:

P does not satisfy φ iff there exists an accepting run in Q.

494

Characterization of accepting runs

Question: If there an accepting run starting at (p0, q0)w0?

In the following, we shall consider the following, more general global
model-checking problem:

Compute all configurations c such that there exists an accepting run starting
at c.

Lemma: There is an accepting run starting at c iff there exists (p, q) ∈ P × Q,
A ∈ Γ with the following properties:

(1) c ⇒ (p, q)Aw for some w ∈ Γ∗

(2) (p, q)A⇒ (p, q)Aw ′ for some w ′ ∈ Γ∗, where

the path from (p, q)A to (p, q)Aw ′ contains at least one step;

the path contains at least one accepting Büchi state.

495

Repeating heads

We call (p, q)A a repeating head if (p, q)A satisfies properties (1) and (2).

Strategy:

1. Compute all repeating heads.
(naı̈vely: check for each pair (p, q)A whether
(p, q)A ∈ pre∗({ (p, q)Aw | w ∈ Γ∗ }). Visiting an accepting state can be
encoded into the control state, see next slide.

2. Compute the set pre∗({ (p, q)Aw | (p, q)A is a repeating head, w ∈ Γ∗ })

496

Implementing step 1

First, we transform Q into a modified PDS Q′.

For each pair (p, q) ∈ P × Q, Q′ has got two control states: (p0, q), (p1, q).

For each rule (p, q)A ↪→ (p′, q′)w in Q, Q′ has got rules:
(pb, q)A] ↪→ (p′1, q)w for b = 0,1 if q ∈ F ;
(pb, q)A] ↪→ (p′b, q)w for b = 0,1 if q /∈ F .

Then, for Q′, we compute once the set pre∗({ (p1, q)ε | (p, q) ∈ P × Q })

497

We then construct the following finite graph G = (V ,→):

V = (P × Q)× Γ

(p, q)A→ (p′, q′)B iff there exist (p, q)A ↪→ (p′′, q′′)vBw with
(p′′, q′′) ∈ P × Q, v ,w ∈ Γ∗, and (p′′, q′′)v ⇒ (p′, q′)ε

Label the edge (p, q)A→ (p′, q′)B by 1 iff either q ∈ F or
(p′′0, q

′′)v ⇒ (p′1, q
′)ε holds in Q′.

Notice that an edge is labelled by 1 iff there is a stack-increasing computation
leading from one head to another visiting an accepting Büchi state.

Find those SCCs in G that contain a 1-labelled edge.

(p, q)A is a repeating head iff it is contained in such an SCC.

498

CTL∗ and PDS

The model-checking approach for PDS can even be lifted to CTL∗.

The approach is analogous to finite-state systems (sketch only):

Solve the innermost E-subformulae using the global LTL model-checking
algorithm we have developed.

The result is a finite-state automaton A giving all the configurations satisfying
that subformula.

Modify the PDS: Encode the states of A into the stack alphabet and
synchronize the push/pop operations with the actions of A such that the
top-of-stack symbol shows the final state of A iff the current stack content is
accepted by A.

Replace the subformula by a fresh atomic proposition (which holds if the the
top-of-stack symbol shows the final state of A), and continue as in the
finite-state case.

499

Part 15: Tree-Rewriting Systems

500

From sequences to trees

Pushdown configurations are words (i.e., sequences of symbols).

q ABC

B

C

A

q

Alternative view: a sequence is a (degenerated) tree.

PDS rules replace one (degenerated) subtree by another, e.g. for qA ↪→ rε:

B

C

A

q

C

B

r

501

Let us consider the case where configurations are general trees, and where rules
replace one subtree by another.

Motivation:

Systems with procedures and threads

Functional languages, e.g., the term f(g(a), b) is a tree:

f

g

a

b

502

An equality b = h(c) corresponds to the rewrite rule:

f

g

a c

h

f

g

a

bb
h

c

Notice that if a node has more than one child, their order matters (i.e., there is a
designated first, second etc. child); we speak of ordered trees.

In the trees we are interested in, each node is labelled by some symbol.
If the symbols of a tree are all taken from an alphabet Σ, we speak of Σ-labelled
trees.

503

Ground Tree Rewrite Systems

A Ground Tree Rewrite System (GTRS) is a tuple (Σ,∆), where:

Σ is a finite alphabet;

∆ is a finite set of rewrite rules;
each rewrite rule is a pair of ordered Σ-labelled trees.

A configuration of a GTRS G = (Σ,∆) is a Σ-labelled tree.

If t is a configuration of G, and t ′ a subtree of t such that (t ′, u′) ∈∆, then t can
be rewritten to u, where u is the tree obtained from t by replacing t ′ with u′ (see
previous example).

504

GTRS and PDS

It is easy to see that GTRS are a generalization of PDS; i.e. each PDS can be
expressed as a GTRS (but not necessarily vice versa).

Using the rewriting relation of GTRS, we can define reachability between
configurations, i.e., t ⇒ u if u can be obtained from t by zero or more rewritings;
pre∗ and post∗ are then defined as in PDS.

We shall see the following:

Like for PDS, there is a representation for (“regular”) sets of trees.

Like for PDS, regularity is closed under reachability.

Unlike for PDS, LTL model checking becomes undecidable!

505

Representing sets of trees

Like PDS, GTRS are infinite-state systems (i.e., any GTRS may have infinitely
many different configurations).

Therefore, like for PDS, we need a representation for infinite sets of
configurations.

For PDS, we used finite automata. We shall generalize these to tree automata.

A run of a finite automaton, given input abcde, may have the following form
(corresponding automaton not shown):

b

q2 q2

d

q1

e

q3q1q0

a c

A run is considered accepting if at the end of the input, we reach a final state.

506

Alternative view: A word is a (degenerated) tree, a run labels each node with a
state:

b

c

d

e

a q1

q2

q2

q1

q3

In this view, a run is accepting if the root is labelled with a final state.

507

In a tree automaton, the input is a tree, and a run labels each node with a state.
Thus a sequence of states transitions under a letter into the next state. A run is
considered accepting if the root is labelled by a final state.

Rules of the form q′ a→ q specify how to label nodes with one child;
rules of the form (q′, q′′) a→ q are for nodes with two children etc.;
rules of the form ()

a→ q specify how to label leaves (corresponding to q being
initial)

The next slides contain the formal definitions.

508

Tree automata

A tree automaton is a tuple T = (Σ,Q,F , δ), where:

Σ is a finite input alphabet;

Q is a finite set of states;

F ⊂ Q are the final states;

δ ⊆ Q∗ ×Σ× Q is a finite set of transitions.

T is called deterministic if for each pair (~q, a) ∈ Q∗ ×Σ there is at most one
r ∈ Q such that (~q, a, r) ∈ δ.

Remark: We denote transition (q1 · · · qn, a, q) as (q1, . . . , qn)
a→ q.

509

Regular tree languages

Let T = (Σ,Q,F , δ) be a tree automaton and t a Σ-labelled tree.

Suppose that n is a node of t labelled by a ∈ Σ.
We say that n can be labelled by q ∈ Q if

either n is a leaf and δ contains a→ q,

or n has children that can be labelled by q1, . . . , qn (in that order), and δ
contains (q1, . . . , qn)

a→ q.

We say that t is accepted by T if its root can be labelled by some final state of T .

The set of trees accepted by T is called the language of T , denoted L(T).

A set of trees is called regular if there is a tree automaton accepting it.

510

Example

Let T = (Σ,Q,F , δ), where Σ = {a, b}, Q = {r , s}, F = {s},
and δ contains the following rules:

a→ s, (r , s)
a→ s, b→ r , (r , r)

b→ r .

In the tree shown below, the possible labels are shown in blue.

a

b a

b b

s

sr

rr

Since the root is labelled by final state s, the tree is accepted.

511

Tree automata with empty moves

Like in finite automata, it is sometimes convenient to consider tree automata with
“empty” moves.

An “empty” move is denoted by a rule q → q′, meaning that any state that can be
labelled with q can also be labelled with q′.

Like for finite automata, empty moves can only occur in nondeterministic
automata; they can be eliminated by adding, for each pair of rules ~q a→ q and
q → q′, another rule ~q a→ q′.

Thus, like for finite automata, empty moves do not increase the expressive power
of tree automata.

512

Notes on tree automata

The tree automata considered here are also called bottom-up tree automata.

Like regular word languages, regular tree languages are closed under union,
intersection, and negation.

Like regular word languages, deterministic tree automata are equally powerful as
non-deterministic ones.

The corresponding operations on tree automata can be adapted from those on
finite automata.

513

Reachability on GTRS

Let G = (Σ,∆) be a GTRS and L be a set of Σ-labelled trees.

We make the following claims (analogous to PDS):

If L is regular, then so are pre∗(L) and post∗(L).

If T is a tree automaton accepts L, then T can be effectively transformed into
an automaton accepting pre∗(L) (or post∗(L), respectively).

514

In the following, we shall transform T into T ′ such that L(T ′) = pre∗(L(T)).

1. Set T ′ := T .

2. For each pair (t , u) ∈∆, build a tree automaton Tt that accepts just t .
Assume that Tt has one single final state qt . Add the states and transitions of
Tt to T ′, however qt will not be accepting in T ′.

3. If (t , u) ∈∆ and u can be labelled by some state q of T ′, then add an
empty move qt → q to T ′.

4. Repeat step 3 until no more additions are possible.

Note: For post∗, just switch the left/right-hand sides of the rules.

515

LTL on GTRS

We now show that the following problem is undecidable.

Let G be a GTRS and φ an LTL formula, does G |= φ?

Proof idea:

Reduction to the halting problem of Turing machines on empty tape.

Given a TMM we construct G and φ, such that G |= φ iffM stops.

516

Recap: Turing machines

Let (Σ,Q, q0, qf ,#, δ) be a Turing machine with

tape alphabet Σ, control states Q, initial state q0,

accepting state qf , empty tape symbol #, transitions δ.

W.l.o.g., we assume thatM is deterministic.

Moreover, # /∈ Σ and we define Σ′ := Σ ∪ {#}.

The transitions in δ are of the form (p, a,X , q, b) with p, q ∈ Q, a, b ∈ Σ,
X ∈ {L,N,R}.

517

Construction of the GTRS

Our GTRS has the following alphabet:

{S} ∪ { (Q, q) | q ∈ Q } ∪ { (X , a) | X ∈ {L,R}, a ∈ Σ }

The intial configuration is the tree with a root and three children labelled (Q, q0),
(L,#), and (R,#), respectively. (In the following, these are called the
Q/L/R-components.)

All other rules modify one of these three components.

518

Reachable trees of the GTRS

Each reachable tree will have three components below the root, one consisting
of a single node, and two stacks:

(L,b)

(L,#)

(L,a)

(L,c)

(Q,q)

(R,#)

(R,e)

(R,d)

Each such configuration can be interpreted as a configuration ofM (for instance,
the tape content #abcde# with control state q, where the reading head is on c).

519

Rules of the GTRS

The other rules simulate the usual operations on the stack, where the actions
“record” what happens.

Operations on the Q-component:

(Q, q)
(Q,q,q′)−→ (Q, q′) for all q, q′ ∈ Q and q 6= qf and (Q, qf)

Halt−→ ε

Operations on the L/R-components:

(X , a)
(X ,a,b)−→ (X , b) for all X ∈ {L,R}, a, b ∈ Σ′

(X , a)
(X ,a,ε)−→ ε for all X ∈ {L,R}, a ∈ Σ

(X ,#)
(X ,#,ε)−→ (X ,#) for all X ∈ {L,R}

(X , a)
(X ,a,bc)−→ (X , c) . (X , b) for all X ∈ {L,R}, a, b, c ∈ Σ′

520

Behaviour of the GTRS

Note: G can emulate the (single) behaviour ofM, but additionally it can do
completely different things.

Our LTL formula φ will have the following meaning: if G behaves likeM, then it
reaches the accepting state, i.e., φ has the form

φM → FHalt

φM specifies how G should behave in order to emulateM.

521

Construction of φM

Each step ofM modifies the three components; we demand that G works on
them in turns.

ψ := Q ∧ G(Q → (X L ∧ XXR ∧ XXX(Q ∨ Halt)))

Here, Q, L,R are abbreviations for the disjunction of all actions starting with
Q, L,R, respectively.

For each transition t = (p, a,X , q, b) ∈ δ, we define a formula that is true iff a
sequence of three steps corresponds to an execution of t .

for X = N: φt := (Q, p, q) ∧X(L, a, b) ∧XX
∨

c∈Σ′(R, c, c)

for X = L: φt := (Q, p, q) ∧X(L, a, ε) ∧XX
∨

c∈Σ′(R, c, cb)

for X = R: φt := (Q, p, q) ∧
∨

c∈Σ′
(
X(L, a, bc) ∧XX(R, c, ε)

)
522

We now define

φM := ψ ∧ G(Q →
∨
t∈δ

φt)

Thus, φ says that each correct run (there is only one!) reaches the accepting
state. This is the case iffM, starting on the empty tape, halts, which is
undecidable.

523

Part 16: Outlook

524

SAT-based techniques

525

Bounded model checking (BMC)

Unwind the transition system with the property for k of steps

Obtain a formula that is satisfiable iff there is a counterexample for the property
up to length k

Utilize modern satisfiability (SAT) solvers

Very relevant to industrial practice for refutation

526

Safety

LTL property G p

Counterexample: a finite path that ends with a state s that satisfies ¬p

∃s0, . . . , sk . I(s0) ∧
k−1∧
i=0

T (si , si+1) ∧ ¬p(sk)

where I denotes the initial state predicate, and T the transition relation

Creates k replicas of the transition relation

Only one level of (existential) quantification, hence a propositional satisfiability
problem

SAT solvers often require conjunctive normal form (CNF); use Tseitin
transformation in linear-time, resulting in an equi-satisfiable formula in CNF

527

Liveness

LTL property F p

Counterexample: a finite (possibly empty) prefix followed by a finite loop, all
states on the path satisfy ¬p

∃s0, . . . , sk . I(s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k−1∧
i=0

¬p(si) ∧
k−1∨
i=0

sk = si

528

LTL

Syntactic translations follow the syntactic structure of the LTL property

“Semantic” translations are based on the Büchi automaton A¬ϕ

529

Completeness

Generally incomplete, but e.g.

Programs with worst-case execution time (WCET)

Other uses of SAT: Inductive techniques, proof generalization using interpolation,
. . .

530

Inductive techniques

A state property P is an inductive invariant if

1. P holds in the initial state, i.e.,

I =⇒ P

and

2. P holds in all states reachable from states that satisfy P, i.e.,

(P(s) ∧ T (s, s′)) =⇒ P(s′).

Often need be strengthened

531

k -Induction

An automated strengthening technique

Increase the depth of the unwinding (forms a formula similar to a BMC instance)

1. Check that there is no counterexample of length k or less

2. Check that no state reachable from a sequence of k -states that satisfy P
violates P

532

Further streams

533

Combine model checking with

Data-flow analysis

Testing: e.g. white-box fuzzing

Deduction

534

Model checking for

Parametrized systems

Security

Reactive synthesis (see the course Games on graphs)

Quantitative systems (see the course Quantitative verification), cyber-physical
systems

• Real-time systems

• Probabilistic systems

• Hybrid systems

535

