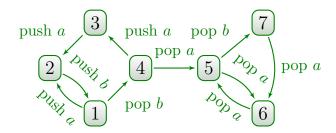
Model Checking – Exercise sheet 12

Exercise 12.1

Consider the pushdown system below, with stack alphabet $\Gamma = \{a, b\}$ where \bigcirc push a \bigcirc , indicates the presence of transitions $1a \hookrightarrow 2aa$ and $1b \hookrightarrow 2ab$, and \bigcirc \bigcirc \bigcirc , indicates the presence of transition $4a \hookrightarrow 5$.



- (a) Let $L = 7b^* = \{7, 7b, 7bb, 7bbb, \ldots\}$. Construct the \mathcal{P} -automaton accepting $\operatorname{pre}^*(L)$.
- (b) Give the minimal automaton accepting the language of all stacks w such that $1w \in \operatorname{pre}^*(L)$.

Exercise 12.2

Consider the following recursive program, where? denotes a nondeterministic Boolean value:

```
procedure main;
mO:
      if ? then
         call a;
      else
         call b;
m1:
      return;
    procedure a;
a0:
      if ? then
         call b;
a1:
         call b;
      else
         call a;
      end if;
a2:
      return;
```

```
procedure b;
b0: if ? then
call a;
b1: if ? then
call a;
end if;
end if;
b2: return;
```

- (a) Model the program with a pushdown system.
- (b) Compute all configurations that can reach the program label m1.

Exercise 12.3

Consider the following recursive program with a global variable g and a local variable 1:

```
boolean g;
    procedure main(boolean 1);
mO:
      if 1 then
        call a;
      end if;
      assert(g == 1);
m1:
m2:
      return;
    procedure a();
a0:
      g := not g;
a1:
      if not g then
        call a;
a2:
        call a;
      end if;
a3:
      return;
```

- (a) Model the program with a pushdown system, where the values of g and 1 are not initialized.
- (b) Compute all configurations that can reach the program label m2.
- (c) \bigstar Compute all configurations that are reachable from the program label m0.

Solution 12.1

(a) First note that the transitions of the pushdown system are as follows:

$$1a \rightarrow 2aa$$

$$1b \rightarrow 2ab$$

$$1b \rightarrow 4$$

$$2a \rightarrow 1ba$$

$$2b \rightarrow 1bb$$

$$3a \rightarrow 2aa$$

$$3b \rightarrow 2ab$$

$$4a \rightarrow 3aa$$

$$4b \rightarrow 3ab$$

$$4a \rightarrow 5$$

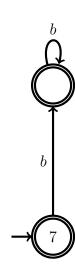
$$5b \rightarrow 7$$

$$5a \rightarrow 6$$

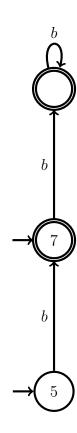
$$6a \rightarrow 5$$

$$7a \rightarrow 6.$$

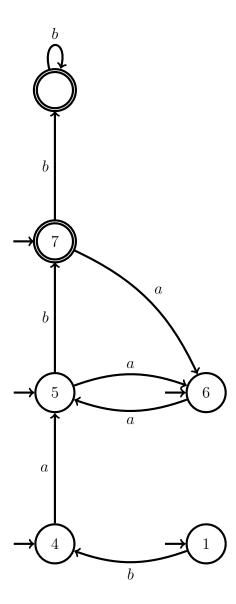
We are looking for $\operatorname{pre}^*(L)$ where $L=7b^*.$ We construct the following $\mathcal P$ -automaton for L:



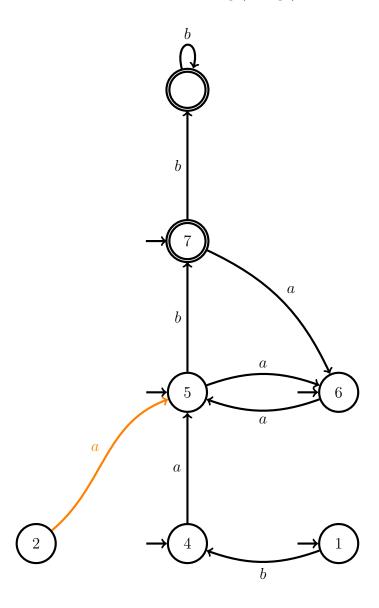
We apply the algorithm to compute $\operatorname{pre}^*(L)$ on the above automaton \mathcal{A} . More precisely, if $q \xrightarrow{w} r$ in \mathcal{A} and if the pushdown system contains a rule $pA \to qw$, then we add a transition $p \xrightarrow{A} r$ to \mathcal{A} . For example, this is the case for $7 \xrightarrow{\varepsilon} 7$ and $5b \to 7$, so we add the transition $5 \xrightarrow{b} 7$:



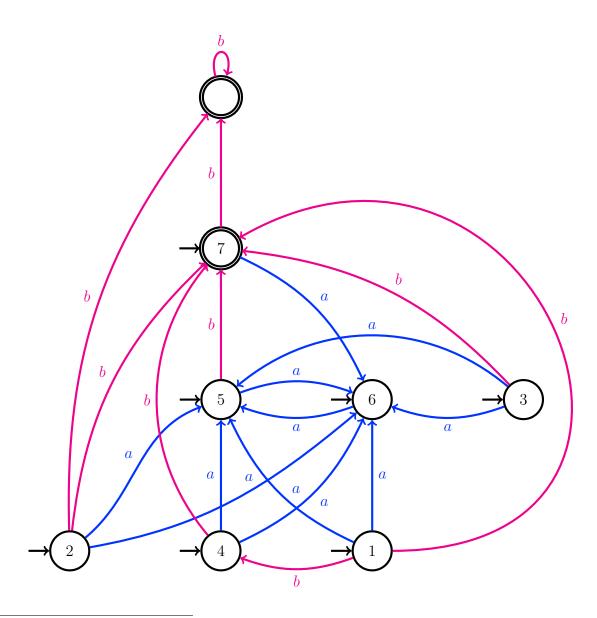
By repeatedly doing the same with rules $4a \rightarrow 5$, $6a \rightarrow 5$, $5a \rightarrow 6$, $7a \rightarrow 6$ and $1b \rightarrow 4$, we obtain:



From rule $2a \rightarrow 1ba$, we add the following (orange) transition:

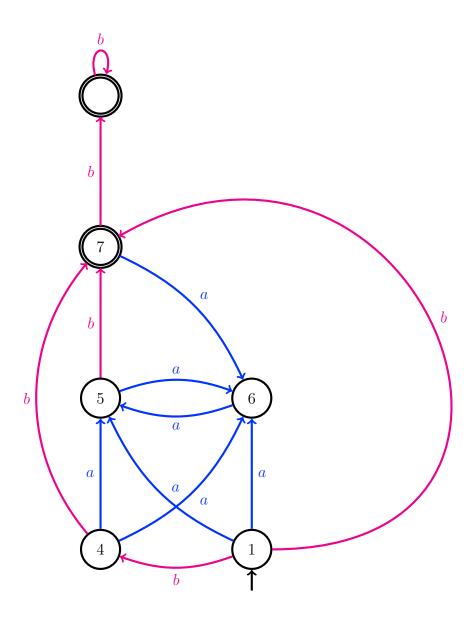


We repeat the process until we derive the following \mathcal{P} -automaton¹:

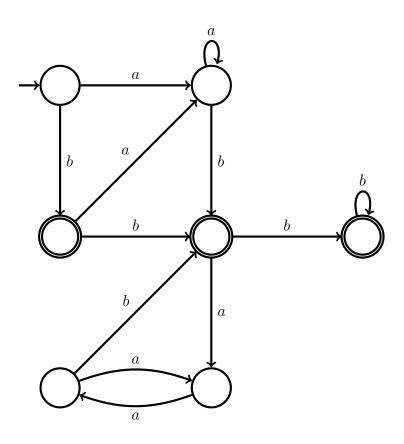


 $^{^{1}}$ Blue and magenta are only used to help distinguishing a and b-transitions.

(b) We are interested in the language accepted by the \mathcal{P} -automaton obtained in (a) starting from control-state 1. By removing the control-states which are non reachable, we obtain the following automaton:



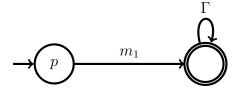
By determinizing and minimizing the above automaton, we derive:



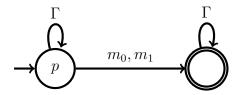
Solution 12.2

(a) Since the program has no global variable, the pushdown system has a single control-state, say p. The stack alphabet is $\Gamma = \{m_0, m_1, a_0, a_1, a_2, b_0, b_1, b_2\}$. The resulting pushdown system is:

(b) We are looking for pre*(L) where $L = p m_1 \Gamma^*$. We construct the following \mathcal{P} -automaton for L:



By applying the algorithm to compute $\operatorname{pre}^*(L)$, we derive the following \mathcal{P} -automaton:

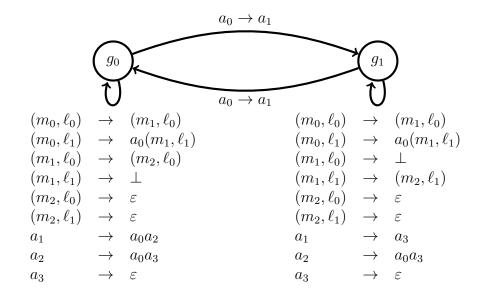


Solution 12.3

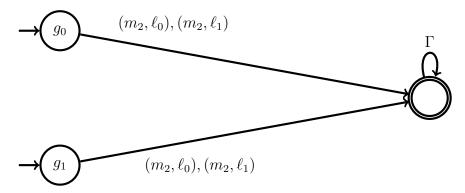
(a) Since the program has a global boolean variable g, the pushdown system has two control-states g_0 and g_1 representing respectively $g = \mathtt{false}$ and $g = \mathtt{true}$. The stack alphabet is

$$\Gamma = \{(m_0, \ell_0), (m_0, \ell_1), (m_1, \ell_0), (m_1, \ell_1), (m_2, \ell_0), (m_2, \ell_1), a_0, a_1, a_2, a_3, \bot\}$$

where \perp stands for an error, and (m_i, ℓ_j) stands for location m_i of main with 1 = true if j = 1, and 1 = false if j = 0. The resulting pushdown system is:

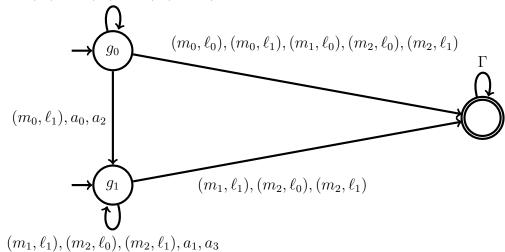


(b) We are looking for $\operatorname{pre}^*(L)$ where $L = (g_0 + g_1) ((m_2, \ell_0) + (m_2, \ell_1))\Gamma^*$. We construct the following \mathcal{P} -automaton for L:

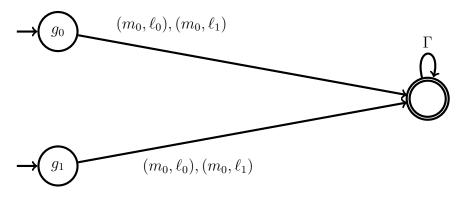


By applying the algorithm to compute $\operatorname{pre}^*(L)$, we derive the following \mathcal{P} -automaton:

$$(m_0, \ell_0), (m_1, \ell_0), (m_2, \ell_0), (m_2, \ell_1), a_3$$



(c) We are looking for post*(L) where $L = (g_0 + g_1) ((m_0, \ell_0) + (m_0, \ell_1))\Gamma^*$. We construct the following \mathcal{P} -automaton for L:



By applying the algorithm to compute $post^*(L)$, we derive the following \mathcal{P} -automaton:

