Model Checking - Exercise sheet 10

Exercise 10.1

Consider the following Kripke structures $\mathcal{K}_{1}, \mathcal{K}_{2}$, and \mathcal{K}_{3}, over $A P=\{p\}$:

\mathcal{K}_{1}

\mathcal{K}_{3}
(a) Does \mathcal{K}_{2} simulate \mathcal{K}_{1} ? If yes, give a simulation relation. Otherwise, explain why.
(b) Does \mathcal{K}_{2} simulate \mathcal{K}_{3} ? If yes, give a simulation relation. Otherwise, explain why.
(c) Does \mathcal{K}_{3} simulate \mathcal{K}_{2} ? If yes, give a simulation relation. Otherwise, explain why.
(d) Does \mathcal{K}_{3} simulate \mathcal{K}_{1} ? If yes, give a simulation relation. Otherwise, explain why.

Exercise 10.2

Let $\mathcal{K}_{1}, \mathcal{K}_{2}$, and \mathcal{K}_{3} be Kripke structures. Show that if \mathcal{K}_{1} and \mathcal{K}_{2} are bisimilar, and \mathcal{K}_{2} and \mathcal{K}_{3} are bisimilar, then \mathcal{K}_{1} and \mathcal{K}_{3} are also bisimilar.

Exercise 10.3

(Taken from 'Principles of Model Checking')
Let $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system. A bisimulation for $T S$ is a binary relation R on S such that for all $\left(s_{1}, s_{2}\right) \in R$:

- $L\left(s_{1}\right)=L\left(s_{2}\right)$.
- If $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$, then there exists an $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in R$.
- If $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$, then there exists an $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in R$.

States s_{1} and s_{2} are bisimulation-equivalent (or bisimilar), denoted $s_{1} \sim_{T S} s_{2}$, if there exists a bisimulation R for $T S$ with $\left(s_{1}, s_{2}\right) \in R$. The relations $\sim_{n} \subseteq S \times S$ are inductively defined by:
(a) $s_{1} \sim_{0} s_{2}$ iff $L\left(s_{1}\right)=L\left(s_{2}\right)$.
(b) $s_{1} \sim_{n+1} s_{2}$ iff

- $L\left(s_{1}\right)=L\left(s_{2}\right)$,
- for all $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ there exists $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $s_{1}^{\prime} \sim_{n} s_{2}^{\prime}$,
- for all $s_{2}^{\prime} \in \operatorname{Post}(s 2)$ there exists $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ with $s_{1}^{\prime} \sim_{n} s_{2}^{\prime}$.

Show that for finite $T S$ it holds that $\sim_{T S}=\bigcap_{n \geq 0} \sim_{n}$, i.e., $s_{1} \sim_{T S} s_{2}$ if and only if $s_{1} \sim_{n} s_{2}$ for all $n \geq 0$.

Solution 10.1

(a) Yes. $H=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{2}\right),\left(s_{4}, t_{0}\right)\right\}$.
(b) No. If there exists a simulation H from \mathcal{K}_{3} to \mathcal{K}_{2}, then we know that $\left(u_{0}, t_{0}\right) \in H$. Since $u_{0} \rightarrow u_{1}$, we have $\left(u_{1}, t_{1}\right) \in H$. However, $u_{1} \rightarrow u_{4}$ and u_{4} satisfies p, but no successors of t_{1} satisfy p, so H cannot exist.
(c) Yes. $H=\left\{\left(t_{0}, u_{0}\right),\left(t_{1}, u_{1}\right),\left(t_{2}, u_{3}\right\}\right.$.
(d) Yes. $H=\left\{\left(s_{0}, u_{0}\right),\left(s_{1}, u_{1}\right),\left(s_{2}, u_{3}\right),\left(s_{3}, u_{3}\right),\left(s_{4}, u_{0}\right)\right\}$. Alternatively, we can also prove that \mathcal{K}_{1} and \mathcal{K}_{2} are bisimilar and use the result from (c).

Solution 10.2

Let H_{12} be a bisimulation between \mathcal{K}_{1} and \mathcal{K}_{2} and H_{23} be a bisimulation between \mathcal{K}_{2} and \mathcal{K}_{3}. We define $H_{13}=\left\{(s, u) \mid \exists t:(s, t) \in H_{12} \wedge(t, u) \in H_{23}\right\}$ and show that H_{13} is a bisimulation between \mathcal{K}_{1} and \mathcal{K}_{3}.

First, we prove that H_{13} is a simulation from \mathcal{K}_{1} to \mathcal{K}_{3}. Basically, we need to prove that if $(s, u) \in H_{13}$ and $s \rightarrow_{1} s^{\prime}$, then there exists u^{\prime} such that $u \rightarrow_{3} u^{\prime}$ and $\left(s^{\prime}, u^{\prime}\right) \in H_{13}$. From the definition of $(s, u) \in H_{13}$, we know that there exists t such that $(s, t) \in H_{12}$ and $(t, u) \in H_{23}$. Since $(s, t) \in H_{12}$ and $s \rightarrow_{1} s^{\prime}$, there must exist t^{\prime} such that $t \rightarrow_{2} t^{\prime}$ and $\left(s^{\prime}, t^{\prime}\right) \in H_{12}$. Similarly, since $(t, u) \in H_{23}$ and $t \rightarrow_{2} t^{\prime}$, there must exist u^{\prime} such that $u \rightarrow_{3} u^{\prime}$ and $\left(t^{\prime}, u^{\prime}\right) \in H_{23}$. Because $\left(s^{\prime}, t^{\prime}\right) \in H_{12}$ and $\left(t^{\prime}, u^{\prime}\right) \in H_{23}$, by the definition of H_{13} we have $\left(s^{\prime}, u^{\prime}\right) \in H_{13}$.

Analogously, we can prove that $\left\{(u, s) \mid(s, u) \in H_{13}\right\}$ is a simulation from \mathcal{K}_{3} to \mathcal{K}_{1}.

Solution 10.3

First we'll show that $s_{1} \sim_{T S} s_{2} \Longrightarrow s_{1} \sim_{n} s_{2}$ for all $n \geq 0$ using induction on n. Base case is trivial since $s_{1} \sim_{T S} s_{2} \Longrightarrow s_{1} \sim_{0} s_{2}$. For the general case we assume that $s_{1} \sim_{T S} s_{2} \Longrightarrow s_{1} \sim_{k-1} s_{2}$ and we will show that $s_{1} \sim_{T S} s_{2} \Longrightarrow s_{1} \sim_{k} s_{2}$. Now, for a pair of states such that $s_{1} \sim_{T S} s_{2}$ there exist an R such that $\left(s_{1}, s_{2}\right) \in R$ and for $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$, there exist $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in R$ which implies that $s_{1}^{\prime} \sim_{T S} s_{2}^{\prime}$. By using the induction assumption, this implies that $s_{1}^{\prime} \sim_{k-1} s_{2}^{\prime}$. Hence, the second condition in the definition of $s_{1} \sim_{k} s_{2}$ is satisfied. Similiarily, we can show that the third condition will also be satisfied.

For the other direction, we define a relation $R:=\left\{\left(s_{1}, s_{2}\right) \mid s_{1} \sim_{n} s_{2}, \forall n \geq 0\right\}$. We shall now show that this is a bisimulation relation. We first claim that $s_{1} \sim_{n} s_{2} \Longrightarrow s_{1} \sim_{k} s_{2}$ for all $k \leq n$ (Use induction on k). Now, since the $T S$ is finite, there exist $N \in \mathbb{N}$ such that $\sim_{k}=\sim_{N}$ for all $k \geq N$ (Why?). Assume $\left(s_{1}, s_{2}\right) \in R$ then trivially $L\left(s_{1}\right)=L\left(s_{2}\right)$ and if $s_{1}^{\prime} \in \operatorname{Post}\left(s_{1}\right)$ then pick some $n_{0}>N$ and since $s_{1} \sim_{n_{0}} s_{2}$, there exists $s_{2}^{\prime} \in \operatorname{Post}\left(s_{2}\right)$ with $s_{1}^{\prime} \sim_{n_{0}-1}$ which implies that $s_{1}^{\prime} \sim_{n} s_{2}^{\prime}$ for all $n \geq 0$. This means that $\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in R$ and the second condition for R to be a bisimulation is satisfied. Similarily, R satisfies the third condition as well.

