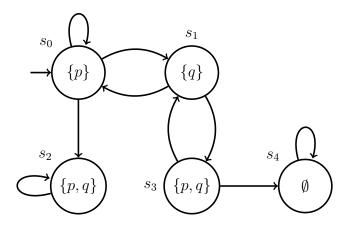
Technische Universität München (I7)Summer Semester 2020J. Křetínský / P. Ashok / K. Grover / T. Meggendorfer18.06.2019

Model Checking – Exercise sheet 7

Exercise 7.1

Compute $[\mathbf{E}\mathbf{G}q]$, $[\mathbf{E}\mathbf{X}\mathbf{A}\mathbf{G}(p \lor q)]$ and $[\mathbf{E}\mathbf{F}\mathbf{A}\mathbf{G}(p \land q)]$ for the following Kripke structure:



Exercise 7.2

(Taken from *Principles of Model Checking*)

Provide two Kripke structures \mathcal{K}_1 and \mathcal{K}_2 (over the same set of atomic propositions) and a CTL formula ϕ such that $Traces(\mathcal{K}_1) = Traces(\mathcal{K}_2)$ and $\mathcal{K}_1 \models \phi$, but $\mathcal{K}_2 \not\models \phi$.

Exercise 7.3

Given two CTL formulas ϕ_1 and ϕ_2 , we write $\phi_1 \Rightarrow \phi_2$ iff for every Kripke structure \mathcal{K} we have $(\mathcal{K} \models \phi_1) \Rightarrow (\mathcal{K} \models \phi_2)$. Furthermore, we define an *implication graph* as a directed graph whose nodes are CTL formulas, and that contains an edge from ϕ_1 to ϕ_2 iff $\phi_1 \Rightarrow \phi_2$. Let $AP = \{p\}$.

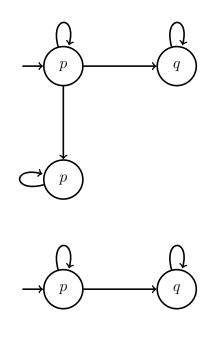
- (a) Draw an implication graph with the nodes: EFEFp, EGEGp, AFAFp, AGAGp.
- (b) For each implication $\phi_1 \Rightarrow \phi_2$ obtained in (a), give a Kripke structure \mathcal{K} that satisfies ϕ_2 but not ϕ_1 , i.e. give a \mathcal{K} such that $\mathcal{K} \models \phi_2$ and $\mathcal{K} \not\models \phi_1$.
- (c) Add the following CTL formulas to the implication graph obtained in (a): $\mathbf{AFEF}p$, $\mathbf{EFAF}p$, $\mathbf{AGEG}p$, $\mathbf{EGAG}p$.

Solution 7.1

- 1. $\llbracket \mathbf{E}\mathbf{G}q \rrbracket = \{s_1, s_2, s_3\}$
- 2. $\llbracket \mathbf{EXAG}(p \lor q) \rrbracket = \{s_0\}$
- 3. $[[\mathbf{EFAG}(p \land q)]] = \{s_0, s_1, s_2, s_3\}$

Solution 7.2

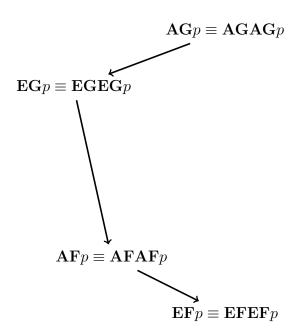
Consider the following Kripke structures and the property $\phi = \mathbf{EFAG}p$, first one satisfies ϕ and second one does not.



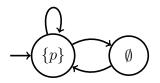
Solution 7.3

Note that the " \Rightarrow " relation is transitive, hence all transitive edges in (a), (b) and (d) are omitted.

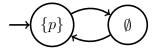
(a)



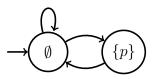
(b) The following Kripke structure satisfies $\mathbf{EG}p$, but not $\mathbf{AG}p$:



The following Kripke structure satisfies $\mathbf{AF}p$, but not $\mathbf{EG}p$:



The following Kripke structure satisfies $\mathbf{EF}p$, but not $\mathbf{AF}p$:



(c)

