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Model Checking — Exercise sheet 6

Exercise 6.1
Consider the following Kripke structure I = (S, A, —,0, AP, v), where A = {a,b,¢,d, e},
AP = {p}, v(6) = {p}, and v(s) = 0 if s # 6.

(a) Write down the maximal independence relation 7 C A x A.
(b) Write down the maximal invisibility set U C A.

(c) Compute a reduction function red that satisfies the ample set conditions C0O-C3.
Whenever possible, choose red(s) such that it is a proper subset of en(s), for each
state s.

(d) Use red to construct a reduced Kripke structure K’ that is stuttering equivalent to the
original Kripke structure K.
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Exercise 6.2
Consider the following Promela model

byte g;

active proctype m() {

byte x;

mO: x++;

ml: x++;

m2: g = Xx;

}

active proctype n() {
byte y;

n0: y++;

nl: y++;

n2: atomic { (g>0) -> g = g-y }
}

active proctype p() A{
pO: atomic { (g>0) -> g-- }
}

and the following properties:
a) The value of g will eventually become one.
b) The process n cannot finish before the process m reaches m1.

For each property, define a labeled Kripke structure with actions extracted from pro-
gram statements. Determine the independence relation and the invisibility set, and con-
struct a reduced Kripke structure using the ample sets method.



Solution 6.1

(a) I = { (CL, b), (CL, C)? (a’7 d)v (b7 C)) (bv 6), (Cv d)) (Cv 6)7 (d7 6)7
(b,a),(c,a),(d,a),(c,b),(e,b),(d,c),(ec),(ed)

(b) U ={b,c,d}

(c) red(0) = {a,b}, red(1) = {c}, red(2) = {a, e}, red(5) = {d}, red(4) = {b,d}, red(6) =
{a}, red(7) = {b}, red(8) = {d}, red(9) = {c}, red(10) = {b}, red(12) = {a},

(d)
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Solution 6.2
We define actions ag, a1, as, by, by, by, and ¢ for statements in m, n, and p, respectively. Each
state in the Kripke structure is a tuple of program locations and a valuation of g. Notice
that it is not necessary to explicitly models valuations of x and y as they are implicitly
defined by program locations of m and n.

For each property, we construct a labeled Kripke structure = (S, A, —,r, AP,v),
where and S, A, —, and r are as follows:
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The independence relation I = (A x A\ Id) \ {(bs, c), (co, ba)}-
Next, we consider each property individually.

a) The corresponding LTL formula is F(g == 1), where AP, = {g == 1}. So, v,(s) =
{g == 1} iff the valuation of g in the state s is 1, and as a result, U = A\ {bs,co}. A

possible reduced Kripke structure is as follows:
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b) The corresponding LTL formula is m; R —ngs, where AP, = {my,n3}. v(s) = {m1}
(resp. {n3}) iff the s contains m; (resp. {n3}). As a result, U = A\ {ag,a1,b2}. A
possible reduced Kripke structure is as follows:
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