Technische Universität München (I7) J. Esparza / P. Ashok / T. Meggendorfer Summer Semester 2019 06.06.2019

Model Checking – Exercise sheet 6

Exercise 6.1

Consider the following Kripke structure $\mathcal{K} = (S, A, \rightarrow, 0, AP, \nu)$, where $A = \{a, b, c, d, e\}$, $AP = \{p\}, \nu(6) = \{p\}$, and $\nu(s) = \emptyset$ if $s \neq 6$.

- (a) Write down the maximal independence relation $I \subseteq A \times A$.
- (b) Write down the maximal invisibility set $U \subseteq A$.
- (c) Compute a reduction function red that satisfies the ample set conditions C0–C3. Whenever possible, choose red(s) such that it is a proper subset of en(s), for each state s.
- (d) Use *red* to construct a reduced Kripke structure \mathcal{K}' that is stuttering equivalent to the original Kripke structure \mathcal{K} .

Exercise 6.2

Consider the following Promela model

```
1 byte g;
\mathbf{2}
  active proctype m() {
3
  byte x;
4
  m0: x++;
5
  m1: x++;
6
7
  m2: g = x;
  }
8
9
  active proctype n() {
10
  byte y;
11
  n0: y++;
12
  n1: y++;
13
  n2: atomic { (g>0) -> g = g-y }
14
15
  }
16
  active proctype p() {
17
  p0: atomic { (g>0) -> g-- }
18
19
  }
```

and the following properties:

a) The value of g will eventually become one.

b) The process n cannot finish before the process m reaches m1.

For each property, define a labeled Kripke structure with actions extracted from program statements. Determine the independence relation and the invisibility set, and construct a reduced Kripke structure using the ample sets method.

Solution 6.1

(a)
$$I = \{ (a, b), (a, c), (a, d), (b, c), (b, e), (c, d), (c, e), (d, e), (b, a), (c, a), (d, a), (c, b), (e, b), (d, c), (e, c), (e, d) \}$$

- (b) $U = \{b, c, d\}$
- (c) $red(0) = \{a, b\}, red(1) = \{c\}, red(2) = \{a, e\}, red(5) = \{d\}, red(4) = \{b, d\}, red(6) = \{a\}, red(7) = \{b\}, red(8) = \{d\}, red(9) = \{c\}, red(10) = \{b\}, red(12) = \{a\},$
- (d)

Solution 6.2

We define actions $a_0, a_1, a_2, b_0, b_1, b_2$, and c_0 for statements in m, n, and p, respectively. Each state in the Kripke structure is a tuple of program locations and a valuation of g. Notice that it is not necessary to explicitly models valuations of x and y as they are implicitly defined by program locations of m and n.

For each property, we construct a labeled Kripke structure $\mathcal{K} = (S, A, \rightarrow, r, AP, \nu)$, where and S, A, \rightarrow , and r are as follows:

The independence relation $I = (A \times A \setminus Id) \setminus \{(b_2, c_0), (c_0, b_2)\}$. Next, we consider each property individually.

a) The corresponding LTL formula is $\mathbf{F}(\mathbf{g} == 1)$, where $AP_a = \{\mathbf{g} == 1\}$. So, $\nu_a(s) = \{\mathbf{g} == 1\}$ iff the valuation of \mathbf{g} in the state s is 1, and as a result, $U = A \setminus \{b_2, c_0\}$. A possible reduced Kripke structure is as follows:

b) The corresponding LTL formula is $m_1 \mathbf{R} \neg n_3$, where $AP_b = \{m_1, n_3\}$. $\nu_b(s) = \{m_1\}$ (resp. $\{n_3\}$) iff the *s* contains m_1 (resp. $\{n_3\}$). As a result, $U = A \setminus \{a_0, a_1, b_2\}$. A possible reduced Kripke structure is as follows:

$$(m_{0}, n_{0}, p_{0}, 0)$$

$$(m_{0}, n_{1}, p_{0}, 0)$$

$$(m_{0}, n_{1}, p_{0}, 0)$$

$$(m_{1}, n_{2}, p_{0$$