Model Checking - Exercise sheet 4

Exercise 4.1

Using the Compare feature in Spot (https://spot.lrde.epita.fr/app) give an LTL formula equivalent to
(a) $p \mathbf{R} q$, which does not contain \neg but may contain \mathbf{U}, \mathbf{G} or \mathbf{F}.
(b) $(\mathbf{G} p) \mathbf{U} q$ which does not contain \mathbf{U}.
(c) $(\mathbf{F} p) \mathbf{U} q$, which does not contain \mathbf{U}.

Exercise 4.2

Think of a way to use Spot to check if a word α satisfies an LTL formula ϕ. Check if the word $\{q\} \emptyset\{s\} \emptyset\{p\}^{\omega}$ satisfies $\mathbf{G} \neg q \vee \mathbf{F}(q \wedge(\neg p \mathbf{W} s))$.

Exercise 4.3

Challenge: what is the largest LTL formula you can come up with using only one atomic proposition p and without using the \mathbf{X} operator, which Spot is unable to simplify?

Exercise 4.4

Given the following Kripke structures and LTL formulae, answer the following questions
(a) Which of $\mathcal{K}_{1}, \mathcal{K}_{2}$ and \mathcal{K}_{3} satisfy $\phi=\mathbf{G}(\mathbf{X} q \rightarrow p)$?
(b) Give an LTL formula which exactly characterizes \mathcal{K}_{3}, i.e. both the formula and the Kripke structure accept exactly the same words.

Exercise 4.5

Let $A P=\{p, q\}$ and let $\Sigma=2^{A P}$. Give Büchi automata recognizing the ω-languages over Σ defined by the following LTL formulas:
(a) $\mathrm{XG} \neg p$
(b) $(\mathbf{G F} p) \rightarrow(\mathbf{F} q)$
(c) $p \wedge \neg(\mathbf{X F} p)$
(d) $\mathbf{G}(p \mathbf{U}(p \rightarrow q))$
(e) $\mathbf{F} q \rightarrow(\neg q \mathbf{U}(\neg q \wedge p))$

Exercise 4.6
Given $L=\left\{\{p\}^{m}\{q\}^{n} \not \emptyset^{\omega}: m \leq n\right\}$, show that there is no Büchi automata recognizing L.

Figure 1: \mathcal{K}_{1}

Figure 2: \mathcal{K}_{2}

Solution 4.1

(a) $(q \mathbf{U}(p \wedge q)) \vee \mathbf{G} q$
(b) $(\mathbf{F} q \wedge \mathbf{G} p) \vee q$.
(c) $q \vee \mathbf{F}(\mathbf{F} p \wedge \mathbf{X} q)$ or
another longer solution: $\mathbf{F}(q \wedge \mathbf{F} p) \vee \mathbf{F}(p \wedge \mathbf{X} q) \vee \mathbf{G} q \vee q$

Solution 4.2

Use $\mathbf{X}, \mathbf{X X}$ and so on to describe the word. Then run compare.

Solution 4.3

Solution by Max and Lukas from the tutorial: $(((p \wedge \mathbf{F} \neg p \wedge \mathbf{G}(\mathbf{F} p \wedge \mathbf{F}(\mathbf{G} \neg p \mid \mathbf{G} p))) \mid(\mathbf{F}(\mathbf{G} \neg p \mid \mathbf{G}(\mathbf{F} p \wedge$ $\mathbf{F} \neg p)) \wedge(\neg p \mid \mathbf{G} p))) \wedge((p \wedge \mathbf{F}(\mathbf{G} \neg p \mid \mathbf{G}(\mathbf{F} p \wedge \mathbf{F} \neg p))) \mid(p \wedge \mathbf{F} \neg p \wedge(\neg p \mid \mathbf{G}(\mathbf{F} p \wedge \mathbf{F}(\mathbf{G} \neg p \mid \mathbf{G} p)))))) \mid((\neg p \mid \mathbf{G}(\mathbf{F} p \wedge$ $\mathbf{F}(\mathbf{G} \neg p \mid \mathbf{G} p))) \wedge((p \wedge \mathbf{F}(\mathbf{G} \neg p \mid \mathbf{G}(\mathbf{F} p \wedge \mathbf{F} \neg p))) \mid(\mathbf{G}(\mathbf{F} p \wedge \mathbf{F}(\mathbf{G} \neg p \mid \mathbf{G} p)) \wedge(\neg p \mid \mathbf{G} p))))$

Figure 3: \mathcal{K}_{3}

Solution 4.4

(a) \mathcal{K}_{1}
(b) $\mathbf{G}(p \rightarrow \mathbf{X} q)$

Solution 4.5
(a)

(b) Note that $(\mathbf{G F} p) \rightarrow(\mathbf{F} q) \equiv \neg(\mathbf{G F} p) \vee(\mathbf{F} q) \equiv(\mathbf{F G} \neg p) \vee(\mathbf{F} q)$. We construct Büchi automata for $\mathbf{F G} \neg p$ and $\mathbf{F} q$, and take their union:

(c) Note that $p \wedge \neg(\mathbf{X F} p) \equiv p \wedge \mathbf{X G} \neg p$. We construct a Büchi automaton for $p \wedge \mathbf{X G} \neg p$:

(d)

(e)

Solution 4.6

For the sake of contradiction, suppose there exists a Büchi automaton $B=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ such that $\mathcal{L}(B)=L$. Let $m=|Q|$ and let $\sigma=\{p\}^{m}\{q\}^{m} \emptyset^{\omega}$. Since $\sigma \in \mathcal{L}(B)$, there exist $q_{0}, q_{1}, \ldots \in Q$ such that $q_{0} \in Q_{0}$, there are infinitely many indices i such that $q_{i} \in F$ and

$$
q_{0} \xrightarrow{\sigma_{0}} q_{1} \xrightarrow{\sigma_{1}} q_{2} \cdots .
$$

By the pigeonhole principle, there exist $0 \leq i<j \leq m$ such that $q_{i}=q_{j}$. Let $u=$ $\sigma_{0} \sigma_{1} \cdots \sigma_{i-1}, v=\sigma_{i} \sigma_{i+1} \cdots \sigma_{j-1}$ and $w=\sigma_{j} \sigma_{j+1} \cdots$. We have:

$$
q_{0} \xrightarrow{u} q_{i} \xrightarrow{v^{m+1}} q_{j} \xrightarrow{w} \cdots
$$

Thus, $\sigma^{\prime} \in \mathcal{L}(B)$ where $\sigma^{\prime}=u v^{m+1} w$. Note that v solely consists of the letter $\{p\}$, hence $\left|P_{\sigma^{\prime}}\right| \geq m+1>m=\left|Q_{\sigma^{\prime}}\right|$, which contradicts $\sigma \in \mathcal{L}(B)=L$.

