Technische Universität München (I7)Summer Semester 2020J. Křetínský / P. Ashok / K. Grover / T. Meggendorfer14.05.2020

Model Checking – Exercise sheet 4

Exercise 4.1

Using the *Compare* feature in Spot (https://spot.lrde.epita.fr/app) give an LTL formula equivalent to

- (a) $p \mathbf{R} q$, which does not contain \neg but may contain \mathbf{U}, \mathbf{G} or \mathbf{F} .
- (b) $(\mathbf{G}p) \mathbf{U} q$ which does not contain \mathbf{U} .
- (c) $(\mathbf{F}p) \mathbf{U} q$, which does not contain \mathbf{U} .

Exercise 4.2

Think of a way to use Spot to check if a word α satisfies an LTL formula ϕ . Check if the word $\{q\}\emptyset\{s\}\emptyset\{p\}^{\omega}$ satisfies $\mathbf{G}\neg q \lor \mathbf{F}(q \land (\neg p \mathbf{W} s))$.

Exercise 4.3

Challenge: what is the largest LTL formula you can come up with using only one atomic proposition p and without using the **X** operator, which Spot is unable to simplify?

Exercise 4.4

Given the following Kripke structures and LTL formulae, answer the following questions

- (a) Which of $\mathcal{K}_1, \mathcal{K}_2$ and \mathcal{K}_3 satisfy $\phi = \mathbf{G}(\mathbf{X}q \to p)$?
- (b) Give an LTL formula which exactly characterizes \mathcal{K}_3 , i.e. both the formula and the Kripke structure accept exactly the same words.

Exercise 4.5

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give Büchi automata recognizing the ω -languages over Σ defined by the following LTL formulas:

- (a) $\mathbf{X}\mathbf{G}\neg p$
- (b) $(\mathbf{GF}p) \to (\mathbf{F}q)$
- (c) $p \land \neg (\mathbf{XF}p)$
- (d) $\mathbf{G}(p \mathbf{U} (p \to q))$
- (e) $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p))$

Exercise 4.6

Given $L = \{\{p\}^m \{q\}^n \emptyset^\omega : m \leq n\}$, show that there is no Büchi automata recognizing L.

Figure 1: \mathcal{K}_1

Figure 2: \mathcal{K}_2

Solution 4.1

(a)
$$(q \mathbf{U} (p \land q)) \lor \mathbf{G}q$$

- (b) $(\mathbf{F}q \wedge \mathbf{G}p) \lor q$.
- (c) $q \vee \mathbf{F}(\mathbf{F}p \wedge \mathbf{X}q)$ or another longer solution: $\mathbf{F}(q \wedge \mathbf{F}p) \vee \mathbf{F}(p \wedge \mathbf{X}q) \vee \mathbf{G}q \vee q$

Solution 4.2

Use $\mathbf{X},\,\mathbf{X}\mathbf{X}$ and so on to describe the word. Then run compare.

Solution 4.3

Solution by Max and Lukas from the tutorial: $(((p \land \mathbf{F} \neg p \land \mathbf{G}(\mathbf{F} p \land \mathbf{F}(\mathbf{G} \neg p | \mathbf{G} p)))|(\mathbf{F}(\mathbf{G} \neg p | \mathbf{G}(\mathbf{F} p \land \mathbf{F} \neg p)) \land ((p \land \mathbf{F}(\mathbf{G} \neg p | \mathbf{G}(\mathbf{F} p \land \mathbf{F} \neg p)))|(p \land \mathbf{F} \neg p \land ((p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p)))))|((p \land \mathbf{F} \neg p \land ((p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))))|((p \land \mathbf{F} \neg p \land ((p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))))|(((p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} \neg p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p)) \land ((p \mid \mathbf{G} (\mathbf{F} p \land \mathbf{F} \neg p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|((p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} \neg p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|((p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} \neg p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|((p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} \neg p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|((p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} \neg p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} (\mathbf{F} p \land \mathbf{F} \neg p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p)))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p))))|(\mathbf{G} (\mathbf{F} p \land \mathbf{F} (\mathbf{G} \neg p | \mathbf{G} p)))|(\mathbf{G} (\mathbf{F} p \land \mathbf{G} (\mathbf{G} \neg p | \mathbf{G} p)))|(\mathbf{G} (\mathbf{F} p \land \mathbf{G} p))|(\mathbf{G} (\mathbf{F} p \land \mathbf{G} p))|$

Figure 3: \mathcal{K}_3

Solution 4.4

(a) \mathcal{K}_1

(b) $\mathbf{G}(p \to \mathbf{X}q)$

Solution 4.5

(a)

(b) Note that $(\mathbf{GF}p) \to (\mathbf{F}q) \equiv \neg(\mathbf{GF}p) \lor (\mathbf{F}q) \equiv (\mathbf{FG}\neg p) \lor (\mathbf{F}q)$. We construct Büchi automata for $\mathbf{FG}\neg p$ and $\mathbf{F}q$, and take their union:

(c) Note that $p \land \neg(\mathbf{XF}p) \equiv p \land \mathbf{XG}\neg p$. We construct a Büchi automaton for $p \land \mathbf{XG}\neg p$:

(d)

(e)

Solution 4.6

For the sake of contradiction, suppose there exists a Büchi automaton $B = (Q, \Sigma, \delta, Q_0, F)$ such that $\mathcal{L}(B) = L$. Let m = |Q| and let $\sigma = \{p\}^m \{q\}^m \emptyset^{\omega}$. Since $\sigma \in \mathcal{L}(B)$, there exist $q_0, q_1, \ldots \in Q$ such that $q_0 \in Q_0$, there are infinitely many indices *i* such that $q_i \in F$ and

 $q_0 \xrightarrow{\sigma_0} q_1 \xrightarrow{\sigma_1} q_2 \cdots$.

By the pigeonhole principle, there exist $0 \leq i < j \leq m$ such that $q_i = q_j$. Let $u = \sigma_0 \sigma_1 \cdots \sigma_{i-1}$, $v = \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}$ and $w = \sigma_j \sigma_{j+1} \cdots$. We have:

$$q_0 \xrightarrow{u} q_i \xrightarrow{v^{m+1}} q_j \xrightarrow{w} \cdots$$

Thus, $\sigma' \in \mathcal{L}(B)$ where $\sigma' = uv^{m+1}w$. Note that v solely consists of the letter $\{p\}$, hence $|P_{\sigma'}| \ge m+1 > m = |Q_{\sigma'}|$, which contradicts $\sigma \in \mathcal{L}(B) = L$.