Technische Universität München (I7)Summer Semester 2020J. Křetínský / P. Ashok / K. Grover / T. Meggendorfer14.05.2020

# Model Checking – Exercise sheet 4

#### Exercise 4.1

Using the *Compare* feature in Spot (https://spot.lrde.epita.fr/app) give an LTL formula equivalent to

- (a)  $p \mathbf{R} q$ , which does not contain  $\neg$  but may contain  $\mathbf{U}, \mathbf{G}$  or  $\mathbf{F}$ .
- (b)  $(\mathbf{G}p) \mathbf{U} q$  which does not contain  $\mathbf{U}$ .
- (c)  $(\mathbf{F}p) \mathbf{U} q$ , which does not contain  $\mathbf{U}$ .

### Exercise 4.2

Think of a way to use Spot to check if a word  $\alpha$  satisfies an LTL formula  $\phi$ . Check if the word  $\{q\}\emptyset\{s\}\emptyset\{p\}^{\omega}$  satisfies  $\mathbf{G}\neg q \lor \mathbf{F}(q \land (\neg p \mathbf{W} s))$ .

## Exercise 4.3

Challenge: what is the largest LTL formula you can come up with using only one atomic proposition p and without using the **X** operator, which Spot is unable to simplify?

#### Exercise 4.4

Given the following Kripke structures and LTL formulae, answer the following questions

- (a) Which of  $\mathcal{K}_1, \mathcal{K}_2$  and  $\mathcal{K}_3$  satisfy  $\phi = \mathbf{G}(\mathbf{X}q \to p)$ ?
- (b) Give an LTL formula which exactly characterizes  $\mathcal{K}_3$ , i.e. both the formula and the Kripke structure accept exactly the same words.

#### Exercise 4.5

Let  $AP = \{p, q\}$  and let  $\Sigma = 2^{AP}$ . Give Büchi automata recognizing the  $\omega$ -languages over  $\Sigma$  defined by the following LTL formulas:

- (a)  $\mathbf{X}\mathbf{G}\neg p$
- (b)  $(\mathbf{GF}p) \to (\mathbf{F}q)$
- (c)  $p \land \neg (\mathbf{XF}p)$
- (d)  $\mathbf{G}(p \mathbf{U} (p \to q))$
- (e)  $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p))$

## Exercise 4.6

Given  $L = \{\{p\}^m \{q\}^n \emptyset^\omega : m \leq n\}$ , show that there is no Büchi automata recognizing L.



Figure 1:  $\mathcal{K}_1$ 



Figure 2:  $\mathcal{K}_2$ 



Figure 3:  $\mathcal{K}_3$