Model Checking – Exercise sheet 3

A long time ago, in a galaxy far far away... this exercise sheet was found. Solve the questions and bring balance to the force.

Exercise 3.4

Let $\varphi = \mathbf{FG}p \to \mathbf{GF}(q \lor r)$ and $\psi = \neg(r \mathbf{U} \mathbf{X}p) \mathbf{U} (q \land \neg \mathbf{XX}s)$ be LTL formulas over the atomic propositions $AP = \{p, q, r, s\}$. Say whether the following sequences satisfy φ and ψ . Justify your answers.

(a) \emptyset^{ω}	(d) $\{r\} \emptyset \{p,q,s\}^{\omega}$
(b) $\{p, q, r, s\}^{\omega}$	(e) $\{r\}\emptyset\{p\}\{q,r\}(\{p,s\}\emptyset)^{\omega}$
(c) $\{p\}^{\omega}$	(f) $\{q,r\}\emptyset\{p,q\}\emptyset\{r,s\}^{\omega}$

Exercise 3.5

Let $AP = \{s, r, g\}$ be actions of a process: sending a message, receiving a message, and giving a result, respectively. Specify the following properties in LTL, and give example sequences that satisfy and violate the formulas.

- (a) The process always gives a result.
- (b) The process stops communicating after giving its result.
- (c) The process only gives a result once.
- (d) The process does nothing until it receives a message.

Exercise 3.6

Let $AP = \{p, q\}$. An LTL formula is a tautology if it is satisfied by all sequences over 2^{AP} . Which of the following LTL formulas are tautologies? Justify each answer with a counterexample or a proof.

(a) $\mathbf{G}p \to \mathbf{F}p$ (b) $\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$ (c) $\mathbf{F}\mathbf{G}p \lor \mathbf{F}\mathbf{G}\neg p$ (d) $\neg \mathbf{F}p \to \mathbf{F}\neg \mathbf{F}p$ (e) $\neg (p \mathbf{U} q) \leftrightarrow (\neg p \mathbf{U} \neg q)$ (f) $(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \mathbf{U} (p \lor q))$

Exercise 3.1

There are two traffic lights at a road intersection, each of them can be in the following states: {red, green}. Does the formula $G((t_1 = red) \land (t_2 = green)) \lor ((t_1 = green) \land (t_2 = red))$ specifies that 'both of the lights should not be green at a given time'? If it does, give an accepting run, otherwise give a counter-example and the correct formula.

Exercise 3.2

For the model in the last question, write an LTL formula that says 'Both the lights becomes green infinitely many times'.

Exercise 3.3

You are on your quest to bring balance to the force, for this you have to do some tasks. Look at the following atomic propositions:

- f: Found a death star.
- d: Destroy a death star.
- k: Kill Darth Vader.
- *a* : You are alive.

Write an LTL formula which specifies that you save the galaxy i.e. killing Darth Vader before dying and whenever you find a death star, destroy it.