Model checking — Endterm

- You have **120 minutes** to complete the exam.
- Answers must be written in a **separate booklet**. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable **pen**. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.

Question 1 LTL and Büchi automata (2+2+2+2=8 points)

Consider the following LTL formulae over the set of atomic propositions $AP = \{p, q\}$:

 $\phi_1 = \mathbf{FG}(p \mathbf{U} q) \qquad \phi_2 = \mathbf{FG}(\neg p \to q) \qquad \phi_3 = \mathbf{G}(\neg p \lor (p \mathbf{R} q))$

- (a) Is there a word satisfying ϕ_1 but not ϕ_2 ? If so, exhibit such a word and if not, briefly explain why it does not exist.
- (b) Is there a word satisfying ϕ_2 but not ϕ_1 ? If so, exhibit such a word and if not, briefly explain why it does not exist.
- (c) Is there a word satisfying all three formulae? If so, exhibit such a word and if not, briefly explain why it does not exist.
- (d) Give a Büchi automaton accepting exactly the words satisfying ϕ_1 . Make sure it accepts the following words: $\{p,q\}^{\omega}, \{p\}\{q\}^{\omega}$ and rejects the following words: $\emptyset^{\omega}, \{p\}^{\omega}$.

Question 2 CTL (1+1+1+1=4 points)Consider the CTL formulas $\mathbf{EF}p$, $\mathbf{EFAG}p$, $\mathbf{AGEF}p$, $\mathbf{AGAF}p$, $\mathbf{AG}p$. Draw

- (a) a Kripke structure \mathcal{K}_1 satisfying **EF***p* but not **EFAG***p*;
- (b) a Kripke structure \mathcal{K}_2 satisfying **EFAG***p* but not **AGEF***p*;
- (c) a Kripke structure \mathcal{K}_3 satisfying **AGEF***p* but not **AGAF***p*;
- (d) a Kripke structure \mathcal{K}_4 satisfying **AGAF***p* but not **AG***p*.

Question 3 Partial order reduction (1+1+1+1+1=5 points)

Consider the labelled Kripke structure $\mathcal{K} = (S, A, \rightarrow, r, AP, \nu)$ where $S = \{s_0, \ldots, s_7\}$, $A = \{a, b, c\}$, $r = \{s_0\}$, $AP = \{p\}$, and \rightarrow and ν are graphically represented below. Observe that p holds only at state s_6 and nowhere else.

- (a) Give the largest relation $I \subseteq A \times A$ satisfying the three properties of an independence relation (irreflexivity, symmetry, and the "diamond property") and explain why it is the largest.
- (b) Give the largest invisibility set $U \subseteq A$.
- (c) Does $red(s_0) = \{a\}$ satisfy condition C_1 for I and U? Justify your answer.
- (d) Does $red(s_4) = \{b\}$ satisfy all of $C_0 C_3$ for I and U? Justify your answer.
- (e) Does $red(s_2) = \{a\}$ satisfy all of $C_0 C_3$ for I and U? Justify your answer.

Recall: the conditions that red(s) has to satisfy are

- C0: $red(s) = \emptyset$ iff $en(s) = \emptyset$.
- C1: Every path starting at s satisfies: no action dependent on some action in red(s) can be executed without an action from red(s) occurring first.
- C2: If $red(s) \neq en(s)$ then all actions in red(s) are invisible.
- C3: For all cycles in the reduced Kripke structure the following holds: if $a \in en(s)$ for some state s in the cycle, then $a \in red(s)$ for some (possibly other) state s' in the cycle.

Question 4 BDDs (3+3=6 points)

Assume that you are given a Kripke structure with states $S = \{s_0, s_1, \ldots, s_7\}$.

(a) Compute a multi-BDD representing the two subsets of states $P = \{s_0, s_1, s_3, s_5, s_7\}$ and $Q = \{s_0, s_2, s_6, s_7\}$. Encode each state of S using three bits in the obvious way:

 $s_0 \mapsto 000, s_1 \mapsto 001, \ldots, s_7 \mapsto 111.$

Use the ordering $b_0 < b_1 < b_2$ where b_0 is the most significant bit and b_2 is the least significant bit of the binary encoding.

(b) Compute the set $P \cap Q$ using the BDD intersection algorithm. Show the recursion tree.

Question 5 Abstraction refinement (2+1+2=5 points)

Consider the labelled Kripke structure $\mathcal{K} = (S, A, \rightarrow, r, AP, \nu)$ where $AP = \{p, q\}$, and S, A, \rightarrow and ν are graphically represented as follows:

Let \approx_p be the equivalence relation over S given by $s \approx_p t$ iff $\nu(s) = \nu(t)$.

- (a) Construct the Kripke structure \mathcal{K}' obtained by abstracting S w.r.t. \approx_p .
- (b) Give a counterexample showing that \mathcal{K}' does not satisfy **GF***p*.
- (c) Following the procedure described in the course, use the counterexample to refine \mathcal{K}' into a Kripke structure \mathcal{K}'' .
- (d) 2 Bonus points: Keep refining the abstraction until you prove that the property holds.

Question 6 Simulations and Bisimulations (2+2=4 points)

Consider the three following Kripke structures \mathcal{K}_1 (left) and \mathcal{K}_2 (right):

States coloured black satisfy proposition p and others do not. For (a) and (b), if your answer is *yes*, then give a simulation relation, and if it is *no*, then explain why not. For (c), give a bisimulation relation.

- (a) Does \mathcal{K}_2 simulate \mathcal{K}_1 ?
- (b) Does \mathcal{K}_1 simulate \mathcal{K}_2 ?
- (c) **2** Bonus points: Give a Kripke structure \mathcal{K}_3 bisimilar to \mathcal{K}_2 but smaller than \mathcal{K}_2 . Explain why they are bisimilar.

Question 7 Pushdown systems (3+3+2=8 points)

Consider the following recursive program with a global boolean variable **x**:

	boolean x;		
f0:	<pre>procedure foo; x := not x;</pre>	b0:	<pre>procedure bar; if x then call foo;</pre>
f1:	if x then call foo;		endif;
	else call bar; endif;	b1:	return;
f2:	return;		

- (a) Model the program, where the value of x is not initialized, with a pushdown system $\mathcal{P} = (P, \Gamma, \Delta)$. Give explicit enumerations of the set of control states P, the stack alphabet Γ , and the set of rules Δ . Hint: Δ contains 10 rules.
- (b) Let E be the set of all configurations of \mathcal{P} with empty stack. Give a \mathcal{P} -automaton recognizing the language E. Use the saturation rule to compute a \mathcal{P} -automaton recognizing the language $pre^*(E)$. For each transition added by the saturation rule, explain how it is generated. *Hint*: The \mathcal{P} -automaton for $pre^*(E)$ should have 10 transitions.
- (c) Give a regular expression for the set of all initial configurations of the program, where we assume that foo is the main procedure and, as above, x is not initialized. Is there an initial configuration from which it is impossible to terminate? Briefly justify your answer.

Solution 1 LTL and Büchi automata (2+2+2+2=8 points) $\phi_1 = \mathbf{FG}(p \mathbf{U} q)$ — eventually, \emptyset must stop occurring and q must appear infinitely often. $\phi_2 = \mathbf{FG}(\neg p \rightarrow q)$ — eventually always $p \lor q$. $\phi_3 = \mathbf{G}(\neg p \lor (p \mathbf{R} q))$ — equivalent to $\mathbf{G}(\neg p \lor (p \land q))$.

- (a) No. $p \mathbf{U} q \implies p \lor q$. Hence $\mathbf{FG}(p \mathbf{U} q) \implies \mathbf{FG}(p \lor q) \equiv \mathbf{FG}(\neg p \to q)$.
- (b) Yes. $\{p\}^{\omega}$ satisfies ϕ_2 but not ϕ_1 .
- (c) Yes. $\{p,q\}^\omega$ satisfies all three.
 - (a) is satisfied because $\mathbf{G}(p \wedge q) \implies \mathbf{G}(p \mathbf{U} q);$
 - (b) is satisfied because $p \wedge q \implies p \lor q$; and
 - (c) is satisfied because $\phi_3 \implies \mathbf{G}(\neg p \lor (p \land q))$ and the word ensures $p \land q$ at all points.
- (d) It should accept
 - $\{p,q\}^{\omega}$
 - $\emptyset\{p,q\}^{\omega}$
 - $\{p\}\{q\}^{\omega}$
 - $(\{p\}\{q\})^{\omega}$
 - $\{q\}^{\omega}$

and it should reject

- \emptyset^{ω}
- $\{p\}^{\omega}$

Solution 2 CTL (1+1+1+1=4 points)(a) EFp but not EFAGp

(b) **EFAG**p but not **AGEF**p

(c) $\mathbf{AGEF}p$ but not $\mathbf{AGAF}p$

(d) $\mathbf{AGAF}p$ but not $\mathbf{AG}p$

Solution 3 Partial order reduction (1+1+1+1+1=5 points)

- (a) $I = \{(a, c), (c, a), (b, c), (c, b)\}$. It cannot include $\{(a, b), (b, a)\}$ because the diamond property is violated in s_3 .
- (b) $\{a\}$

•••

- (c) No, C1 is violated because b can be executed before a.
- (d) No, C2 is violated because b is visible.
- (e) (i) C0 is satisfied because $red(s_2)$ is not empty.
 - (ii) C1 is satisfied. The only path from s_2 which doesn't execute a is $s_2 \xrightarrow{c} s_5 \xrightarrow{a} s_7 \ldots$ and in this path, no action dependent on a is executed before a (since $(a, c) \in I$).
 - (iii) C2 is satisfied because a is invisible.
 - (iv) C3 is satisfied because in the reduced Kripke structure, the only two cycles are at s_3 and s_7 , and red of both these states will be non-empty because en is non-empty.

Solution 4 BDDs (3+3=6 points)

Solution 5 Abstraction refinement (2+1+2=5 points)

(a) First abstraction:

$$a_0 = \{s_0, s_2, s_3\},\$$
$$a_1 = \{s_1, s_4\}$$

 a_0

 a_0

 a_0

(b) Counter-example: a_0^{ω} . We have $|a_0| = 3$, so we unroll the loop 4 times:

 a_0

6 of 8

Fails to concretize in 1 step, so we realize that we need to refine. The states which are reachable from the initial state should be distinguished from the states which still have successors. We introduce:

Counter-example: $a_{00}a_1a_{01}a_{01}^{\ \omega}$:

a_{00}	a_1	a_{01}	a_{01}	a_{01}	a_{01}
<i>s</i> ₀ —	$\longrightarrow s_1$ —	$\rightarrow s_2$		s_2	s_2
	s_4 —	$\rightarrow s_3$	s_3	s_3	s_3

We split s_2 and s_3 , and introduce:

$$a_{010} = \{s_2\},\$$
$$a_{011} = \{s_3\}.$$

We obtain the following which satisfies $\mathbf{GF}p$:

Solution 6 Simulations and Bisimulations (2+2=4 points)

- (a) Yes: $\{(a, x), (b, v), (c, v), (d, w)\}.$
- (b) No, we prove by contradiction. Assume there \mathcal{K}_1 simulates \mathcal{K}_2 and let H be the simulation. Since x and a are the respective initial states, $(x, a) \in H$. Since $(x, a) \in H$ and $x \to u$ where u is black, there must exist a black state in \mathcal{K}_1 with a transition from a. The only candidate in this case is d. Hence, $(u, d) \in H$. By a similar argument, if $(u, d) \in H$ and $u \to v$ where v is white, then there must exist a white state in \mathcal{K}_1 with a transition from d—which is not the case. Hence \mathcal{K}_1 does not simulate \mathcal{K}_2 .

(c) Merge x and u in \mathcal{K}_2 to get \mathcal{K}_3 as shown below.

Define the bisimulation relation is as follows: $H = \{(x, u'), (u, u'), (v, v'), (w, w')\}$. Then H must be a simulation from \mathcal{K}_2 to \mathcal{K}_3 and $H' = \{(t, s) \mid (s, t) \in H\}$ must be a simulation from \mathcal{K}_3 to \mathcal{K}_2 . First we prove that H is indeed a simulation from \mathcal{K}_2 to \mathcal{K}_3 . We have

- (i) $(x, u') \in H, x \to u \text{ and } u' \to u', (u, u') \in H.$
- (ii) $(x, u') \in H, x \to v \text{ and } u' \to v', (v, v') \in H.$
- (iii) $(x, u') \in H, x \to w \text{ and } u' \to w', (w, w') \in H.$
- (iv) $(u, u') \in H$, $u \to u$ and $u' \to u'$, $(u, u') \in H$.
- (v) $(u, u') \in H, u \to v \text{ and } u' \to v', (v, v') \in H.$
- (vi) $(u, u') \in H, u \to w \text{ and } u' \to w', (w, w') \in H.$
- $\text{(vii)} \ (u,u') \in H, \, u \to x \text{ and } u' \to u', \, (x,u') \in H.$
- (viii) $(v, v') \in H, v \to u \text{ and } v' \to u', (u, u') \in H.$
- (ix) $(v, v') \in H, v \to w \text{ and } v' \to w', (w, w') \in H.$
- (x) $(v,v') \in H, v \to x \text{ and } v' \to u', (x,u') \in H.$

Now we prove H' is a simulation from \mathcal{K}_3 to \mathcal{K}_2 .

- (i) $(u', x) \in H', u' \to u'$ and $x \to u, (u', u) \in H'$.
- (ii) $(u', x) \in H', u' \to v'$ and $x \to v, (v', v) \in H'$.
- (iii) $(u', x) \in H', u' \to w' \text{ and } x \to w, (w', w) \in H'.$
- (iv) $(v',v) \in H', v' \to u'$ and $v \to u, (u',u) \in H'$.
- (v) $(v', v) \in H', v' \to w' \text{ and } v \to w, (w', w) \in H'.$

Solution 7 Pushdown systems (3+3+2=8 points)

(b)

(a) The stack alphabet is $\Gamma = \{f_0, f_1, f_2, b_0, b_1\}$ and the pushdown system is as follows:

(c) The regular expression is $x_0 f_0 + x_1 f_1$. No, there is no such configuration since the \mathcal{P} -automaton obtained in (b) accepts both $x_0 f_0$ and $x_1 f_1$.