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Model checking — Endterm

• You have 120 minutes to complete the exam.

• Answers must be written in a separate booklet. Do not answer on the exam.

• Please let us know if you need more paper.

• Write your name and Matrikelnummer on every sheet.

• Write with a non-erasable pen. Do not use red or green.

• You are not allowed to use auxiliary means other than pen and paper.

• You can obtain 40 points. You need 17 points to pass.

Question 1 LTL and Büchi automata (2 + 2 + 2 + 2 = 8 points)

Consider the following LTL formulae over the set of atomic propositions AP = {p, q}:

φ1 = FG(p U q) φ2 = FG(¬p→ q) φ3 = G(¬p ∨ (p R q))

(a) Is there a word satisfying φ1 but not φ2? If so, exhibit such a word and if not, briefly explain why it does
not exist.

(b) Is there a word satisfying φ2 but not φ1? If so, exhibit such a word and if not, briefly explain why it does
not exist.

(c) Is there a word satisfying all three formulae? If so, exhibit such a word and if not, briefly explain why it
does not exist.

(d) Give a Büchi automaton accepting exactly the words satisfying φ1. Make sure it accepts the following
words: {p, q}ω, {p}{q}ω and rejects the following words: ∅ω, {p}ω.

Question 2 CTL (1 + 1 + 1 + 1 = 4 points)

Consider the CTL formulas EFp,EFAGp,AGEFp,AGAFp,AGp. Draw

(a) a Kripke structure K1 satisfying EFp but not EFAGp;

(b) a Kripke structure K2 satisfying EFAGp but not AGEFp;

(c) a Kripke structure K3 satisfying AGEFp but not AGAFp;

(d) a Kripke structure K4 satisfying AGAFp but not AGp.

Question 3 Partial order reduction (1 + 1 + 1 + 1 + 1 = 5 points)

Consider the labelled Kripke structure K = (S,A,−→, r, AP, ν) where S = {s0, . . . , s7}, A = {a, b, c}, r = {s0},
AP = {p}, and −→ and ν are graphically represented below. Observe that p holds only at state s6 and nowhere
else.
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(a) Give the largest relation I ⊆ A×A satisfying the three properties of an independence relation (irreflexivity,
symmetry, and the “diamond property”) and explain why it is the largest.

(b) Give the largest invisibility set U ⊆ A.

(c) Does red(s0) = {a} satisfy condition C1 for I and U? Justify your answer.

(d) Does red(s4) = {b} satisfy all of C0–C3 for I and U? Justify your answer.

(e) Does red(s2) = {a} satisfy all of C0–C3 for I and U? Justify your answer.

Recall: the conditions that red(s) has to satisfy are

• C0: red(s) = ∅ iff en(s) = ∅.

• C1: Every path starting at s satisfies: no action dependent on some action in red(s) can be executed
without an action from red(s) occurring first.

• C2: If red(s) 6= en(s) then all actions in red(s) are invisible.

• C3: For all cycles in the reduced Kripke structure the following holds: if a ∈ en(s) for some state s in the
cycle, then a ∈ red(s) for some (possibly other) state s′ in the cycle.

Question 4 BDDs (3 + 3 = 6 points)

Assume that you are given a Kripke structure with states S = {s0, s1, . . . , s7}.

(a) Compute a multi-BDD representing the two subsets of states P = {s0, s1, s3, s5, s7} andQ = {s0, s2, s6, s7}.
Encode each state of S using three bits in the obvious way:

s0 7→ 000, s1 7→ 001, . . . , s7 7→ 111.

Use the ordering b0 < b1 < b2 where b0 is the most significant bit and b2 is the least significant bit of the
binary encoding.

(b) Compute the set P ∩Q using the BDD intersection algorithm. Show the recursion tree.

Question 5 Abstraction refinement (2 + 1 + 2 = 5 points)

Consider the labelled Kripke structure K = (S,A,−→, r, AP, ν) where AP = {p, q}, and S,A,−→ and ν are
graphically represented as follows:
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Let ≈p be the equivalence relation over S given by s ≈p t iff ν(s) = ν(t).

(a) Construct the Kripke structure K′ obtained by abstracting S w.r.t. ≈p.

(b) Give a counterexample showing that K′ does not satisfy GFp.

(c) Following the procedure described in the course, use the counterexample to refineK′ into a Kripke structure
K′′.

(d) 2 Bonus points: Keep refining the abstraction until you prove that the property holds.

Question 6 Simulations and Bisimulations (2 + 2 = 4 points)

Consider the three following Kripke structures K1 (left) and K2 (right):

a

b c
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w

States coloured black satisfy proposition p and others do not. For (a) and (b), if your answer is yes, then give
a simulation relation, and if it is no, then explain why not. For (c), give a bisimulation relation.

(a) Does K2 simulate K1?

(b) Does K1 simulate K2?

(c) 2 Bonus points: Give a Kripke structure K3 bisimilar to K2 but smaller than K2. Explain why they are
bisimilar.
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Question 7 Pushdown systems (3 + 3 + 2 = 8 points)

Consider the following recursive program with a global boolean variable x:

boolean x;

procedure foo; procedure bar;

f0: x := not x; b0: if x then

call foo;

f1: if x then endif;

call foo;

else b1: return;

call bar;

endif;

f2: return;

(a) Model the program, where the value of x is not initialized, with a pushdown system P = (P,Γ,∆). Give
explicit enumerations of the set of control states P , the stack alphabet Γ, and the set of rules ∆.
Hint: ∆ contains 10 rules.

(b) Let E be the set of all configurations of P with empty stack. Give a P-automaton recognizing the
language E. Use the saturation rule to compute a P-automaton recognizing the language pre∗(E). For
each transition added by the saturation rule, explain how it is generated.
Hint: The P-automaton for pre∗(E) should have 10 transitions.

(c) Give a regular expression for the set of all initial configurations of the program, where we assume that
foo is the main procedure and, as above, x is not initialized. Is there an initial configuration from which
it is impossible to terminate? Briefly justify your answer.
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Solution 1 LTL and Büchi automata (2 + 2 + 2 + 2 = 8 points)

φ1 = FG(p U q) — eventually, ∅ must stop occurring and q must appear infinitely often.
φ2 = FG(¬p→ q) — eventually always p ∨ q.
φ3 = G(¬p ∨ (p R q)) — equivalent to G(¬p ∨ (p ∧ q)).

(a) No. p U q =⇒ p ∨ q. Hence FG(p U q) =⇒ FG(p ∨ q) ≡ FG(¬p→ q).

(b) Yes. {p}ω satisfies φ2 but not φ1.

(c) Yes. {p, q}ω satisfies all three.
(a) is satisfied because G(p ∧ q) =⇒ G(p U q);

(b) is satisfied because p ∧ q =⇒ p ∨ q; and
(c) is satisfied because φ3 =⇒ G(¬p ∨ (p ∧ q)) and the word ensures p ∧ q at all points.

(d) It should accept

• {p, q}ω

• ∅{p, q}ω

• {p}{q}ω

• ({p}{q})ω

• {q}ω

and it should reject

• ∅ω

• {p}ω

true

true

{p}

{q}, {p, q}

{q}, {p, q}

{p}

Solution 2 CTL (1 + 1 + 1 + 1 = 4 points)

(a) EFp but not EFAGp

{p} ∅

(b) EFAGp but not AGEFp

∅

∅

{p}
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(c) AGEFp but not AGAFp

∅ {p}

(d) AGAFp but not AGp

∅ {p}

Solution 3 Partial order reduction (1 + 1 + 1 + 1 + 1 = 5 points)

(a) I = {(a, c), (c, a), (b, c), (c, b)}. It cannot include {(a, b), (b, a)} because the diamond property is violated
in s3.

(b) {a}

(c) No, C1 is violated because b can be executed before a.

(d) No, C2 is violated because b is visible.

(e) (i) C0 is satisfied because red(s2) is not empty.

(ii) C1 is satisfied. The only path from s2 which doesn’t execute a is s2
c−→ s5

a−→ s7 . . . and in this path,
no action dependent on a is executed before a (since (a, c) ∈ I).

(iii) C2 is satisfied because a is invisible.

(iv) C3 is satisfied because in the reduced Kripke structure, the only two cycles are at s3 and s7, and red
of both these states will be non-empty because en is non-empty.

Solution 4 BDDs (3 + 3 = 6 points)

...

Solution 5 Abstraction refinement (2 + 1 + 2 = 5 points)

(a) First abstraction:

a0 = {s0, s2, s3},
a1 = {s1, s4}

a1

{p}

a0

{q}

(b) Counter-example: a0
ω. We have |a0| = 3, so we unroll the loop 4 times:

a0 a0 a0 a0

s0 s0 s0 s0

s2 s2 s2 s2

s3 s3 s3 s3
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Fails to concretize in 1 step, so we realize that we need to refine. The states which are reachable from the
initial state should be distinguished from the states which still have successors. We introduce:

a00 = {s0},
a01 = {s2, s3},
a1 = {s1, s4}.

a1

{p}

a00 a01

Counter-example: a00a1a01a01
ω:

a00 a1 a01 a01 a01 a01

s0 s1 s2 s2 s2 s2

s4 s3 s3 s3 s3

We split s2 and s3, and introduce:

a010 = {s2},
a011 = {s3}.

We obtain the following which satisfies GFp:

a1

{p}

a00

a010

a011

Solution 6 Simulations and Bisimulations (2 + 2 = 4 points)

(a) Yes: {(a, x), (b, v), (c, v), (d,w)}.

(b) No, we prove by contradiction. Assume there K1 simulates K2 and let H be the simulation. Since x and
a are the respective initial states, (x, a) ∈ H. Since (x, a) ∈ H and x → u where u is black, there must
exist a black state in K1 with a transition from a. The only candidate in this case is d. Hence, (u, d) ∈ H.
By a similar argument, if (u, d) ∈ H and u → v where v is white, then there must exist a white state in
K1 with a transition from d — which is not the case. Hence K1 does not simulate K2.
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(c) Merge x and u in K2 to get K3 as shown below.

u′

v′ w′

Define the bisimulation relation is as follows: H = {(x, u′)¸(u, u′), (v, v′), (w,w′)}. Then H must be a
simulation from K2 to K3 and H ′ = {(t, s) | (s, t) ∈ H} must be a simulation from K3 to K2. First we
prove that H is indeed a simulation from K2 to K3. We have

(i) (x, u′) ∈ H, x→ u and u′ → u′, (u, u′) ∈ H.

(ii) (x, u′) ∈ H, x→ v and u′ → v′, (v, v′) ∈ H.

(iii) (x, u′) ∈ H, x→ w and u′ → w′, (w,w′) ∈ H.

(iv) (u, u′) ∈ H, u→ u and u′ → u′, (u, u′) ∈ H.

(v) (u, u′) ∈ H, u→ v and u′ → v′, (v, v′) ∈ H.

(vi) (u, u′) ∈ H, u→ w and u′ → w′, (w,w′) ∈ H.

(vii) (u, u′) ∈ H, u→ x and u′ → u′, (x, u′) ∈ H.

(viii) (v, v′) ∈ H, v → u and v′ → u′, (u, u′) ∈ H.

(ix) (v, v′) ∈ H, v → w and v′ → w′, (w,w′) ∈ H.

(x) (v, v′) ∈ H, v → x and v′ → u′, (x, u′) ∈ H.

Now we prove H ′ is a simulation from K3 to K2.

(i) (u′, x) ∈ H ′, u′ → u′ and x→ u, (u′, u) ∈ H ′.
(ii) (u′, x) ∈ H ′, u′ → v′ and x→ v, (v′, v) ∈ H ′.

(iii) (u′, x) ∈ H ′, u′ → w′ and x→ w, (w′, w) ∈ H ′.
(iv) (v′, v) ∈ H ′, v′ → u′ and v → u, (u′, u) ∈ H ′.
(v) (v′, v) ∈ H ′, v′ → w′ and v → w, (w′, w) ∈ H ′.

Solution 7 Pushdown systems (3 + 3 + 2 = 8 points)

(a) The stack alphabet is Γ = {f0, f1, f2, b0, b1} and the pushdown system is as follows:

x0 x1

f0 → f1

f0 → f1f1 → b0f2
f2 → ε
b0 → b1
b1 → ε

f1 → f0f2
f2 → ε
b0 → f0b1
b1 → ε

(b)

x1 x0

b0, b1, f0, f1, f2b1, f2

b0, f0, f1

(c) The regular expression is x0f0 +x1f1. No, there is no such configuration since the P-automaton obtained
in (b) accepts both x0f0 and x1f1.
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