Model checking - Endterm

- You have 120 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.

Question 1 LTL and Büchi automata ($2+2+2+2=8$ points)
Consider the following LTL formulae over the set of atomic propositions $A P=\{p, q\}$:

$$
\phi_{1}=\mathbf{F G}(p \mathbf{U} q) \quad \phi_{2}=\mathbf{F G}(\neg p \rightarrow q) \quad \phi_{3}=\mathbf{G}(\neg p \vee(p \mathbf{R} q))
$$

(a) Is there a word satisfying ϕ_{1} but not ϕ_{2} ? If so, exhibit such a word and if not, briefly explain why it does not exist.
(b) Is there a word satisfying ϕ_{2} but not ϕ_{1} ? If so, exhibit such a word and if not, briefly explain why it does not exist.
(c) Is there a word satisfying all three formulae? If so, exhibit such a word and if not, briefly explain why it does not exist.
(d) Give a Büchi automaton accepting exactly the words satisfying ϕ_{1}. Make sure it accepts the following words: $\{p, q\}^{\omega},\{p\}\{q\}^{\omega}$ and rejects the following words: $\emptyset^{\omega},\{p\}^{\omega}$.

Question 2 CTL $(1+1+1+1=4$ points)

Consider the CTL formulas EF p, EFAG p, AGEF p, AGAF p, AG p. Draw
(a) a Kripke structure \mathcal{K}_{1} satisfying EF p but not EFAG p;
(b) a Kripke structure \mathcal{K}_{2} satisfying EFAG p but not AGEF p;
(c) a Kripke structure \mathcal{K}_{3} satisfying AGEF p but not AGAF p;
(d) a Kripke structure \mathcal{K}_{4} satisfying AGAF p but not AG p.

Question 3 Partial order reduction $(1+1+1+1+1=5$ points)
Consider the labelled Kripke structure $\mathcal{K}=(S, A, \rightarrow, r, A P, \nu)$ where $S=\left\{s_{0}, \ldots, s_{7}\right\}, A=\{a, b, c\}, r=\left\{s_{0}\right\}$, $A P=\{p\}$, and \rightarrow and ν are graphically represented below. Observe that p holds only at state s_{6} and nowhere else.

(a) Give the largest relation $I \subseteq A \times A$ satisfying the three properties of an independence relation (irreflexivity, symmetry, and the "diamond property") and explain why it is the largest.
(b) Give the largest invisibility set $U \subseteq A$.
(c) Does $\operatorname{red}\left(s_{0}\right)=\{a\}$ satisfy condition C_{1} for I and U ? Justify your answer.
(d) Does $\operatorname{red}\left(s_{4}\right)=\{b\}$ satisfy all of $C_{0}-C_{3}$ for I and U ? Justify your answer.
(e) Does $\operatorname{red}\left(s_{2}\right)=\{a\}$ satisfy all of $C_{0}-C_{3}$ for I and U ? Justify your answer.

Recall: the conditions that $\operatorname{red}(s)$ has to satisfy are

- C0: $\operatorname{red}(s)=\emptyset$ iff $e n(s)=\emptyset$.
- C1: Every path starting at s satisfies: no action dependent on some action in red (s) can be executed without an action from $\operatorname{red}(s)$ occurring first.
- C2: If $\operatorname{red}(s) \neq e n(s)$ then all actions in $\operatorname{red}(s)$ are invisible.
- C3: For all cycles in the reduced Kripke structure the following holds: if $a \in e n(s)$ for some state s in the cycle, then $a \in \operatorname{red}(s)$ for some (possibly other) state s^{\prime} in the cycle.

Question 4 BDDs $\quad(3+3=6$ points)

Assume that you are given a Kripke structure with states $S=\left\{s_{0}, s_{1}, \ldots, s_{7}\right\}$.
(a) Compute a multi-BDD representing the two subsets of states $P=\left\{s_{0}, s_{1}, s_{3}, s_{5}, s_{7}\right\}$ and $Q=\left\{s_{0}, s_{2}, s_{6}, s_{7}\right\}$. Encode each state of S using three bits in the obvious way:

$$
s_{0} \mapsto 000, s_{1} \mapsto 001, \ldots, s_{7} \mapsto 111
$$

Use the ordering $b_{0}<b_{1}<b_{2}$ where b_{0} is the most significant bit and b_{2} is the least significant bit of the binary encoding.
(b) Compute the set $P \cap Q$ using the BDD intersection algorithm. Show the recursion tree.

Question 5 Abstraction refinement (2+1+2=5 points)

Consider the labelled Kripke structure $\mathcal{K}=(S, A, \rightarrow, r, A P, \nu)$ where $A P=\{p, q\}$, and S, A, \rightarrow and ν are graphically represented as follows:

Let \approx_{p} be the equivalence relation over S given by $s \approx_{p} t$ iff $\nu(s)=\nu(t)$.
(a) Construct the Kripke structure \mathcal{K}^{\prime} obtained by abstracting S w.r.t. \approx_{p}.
(b) Give a counterexample showing that \mathcal{K}^{\prime} does not satisfy GFp.
(c) Following the procedure described in the course, use the counterexample to refine \mathcal{K}^{\prime} into a Kripke structure $\mathcal{K}^{\prime \prime}$.
(d) 2 Bonus points: Keep refining the abstraction until you prove that the property holds.

Question 6 Simulations and Bisimulations ($2+2=4$ points)

Consider the three following Kripke structures \mathcal{K}_{1} (left) and \mathcal{K}_{2} (right):

States coloured black satisfy proposition p and others do not. For (a) and (b), if your answer is yes, then give a simulation relation, and if it is no, then explain why not. For (c), give a bisimulation relation.
(a) Does \mathcal{K}_{2} simulate \mathcal{K}_{1} ?
(b) Does \mathcal{K}_{1} simulate \mathcal{K}_{2} ?
(c) 2 Bonus points: Give a Kripke structure \mathcal{K}_{3} bisimilar to \mathcal{K}_{2} but smaller than \mathcal{K}_{2}. Explain why they are bisimilar.

Question $7 \quad$ Pushdown systems $\quad(3+3+2=8$ points)
Consider the following recursive program with a global boolean variable x :

```
boolean x;
procedure foo;
    x := not x;
    if x then
            call foo;
        else
            call bar;
    endif;
f2: return;
```

(a) Model the program, where the value of x is not initialized, with a pushdown system $\mathcal{P}=(P, \Gamma, \Delta)$. Give explicit enumerations of the set of control states P, the stack alphabet Γ, and the set of rules Δ. Hint: Δ contains 10 rules.
(b) Let E be the set of all configurations of \mathcal{P} with empty stack. Give a \mathcal{P}-automaton recognizing the language E. Use the saturation rule to compute a \mathcal{P}-automaton recognizing the language pre* (E). For each transition added by the saturation rule, explain how it is generated.
Hint: The \mathcal{P}-automaton for $\operatorname{pre}^{*}(E)$ should have 10 transitions.
(c) Give a regular expression for the set of all initial configurations of the program, where we assume that foo is the main procedure and, as above, x is not initialized. Is there an initial configuration from which it is impossible to terminate? Briefly justify your answer.

Solution 1 LTL and Büchi automata ($2+2+2+2=8$ points)

$\phi_{1}=\mathbf{F G}(p \mathbf{U} q)$ - eventually, \emptyset must stop occurring and q must appear infinitely often.
$\phi_{2}=\mathbf{F G}(\neg p \rightarrow q)-$ eventually always $p \vee q$.
$\phi_{3}=\mathbf{G}(\neg p \vee(p \mathbf{R} q))-$ equivalent to $\mathbf{G}(\neg p \vee(p \wedge q))$.
(a) No. $p \mathbf{U} q \Longrightarrow p \vee q$. Hence $\mathbf{F G}(p \mathbf{U} q) \Longrightarrow \mathbf{F G}(p \vee q) \equiv \mathbf{F G}(\neg p \rightarrow q)$.
(b) Yes. $\{p\}^{\omega}$ satisfies ϕ_{2} but not ϕ_{1}.
(c) Yes. $\{p, q\}^{\omega}$ satisfies all three.
(a) is satisfied because $\mathbf{G}(p \wedge q) \Longrightarrow \mathbf{G}(p \mathbf{U} q)$;
(b) is satisfied because $p \wedge q \Longrightarrow p \vee q$; and
(c) is satisfied because $\phi_{3} \Longrightarrow \mathbf{G}(\neg p \vee(p \wedge q))$ and the word ensures $p \wedge q$ at all points.
(d) It should accept

- $\{p, q\}^{\omega}$
- $\emptyset\{p, q\}^{\omega}$
- $\{p\}\{q\}^{\omega}$
- $(\{p\}\{q\})^{\omega}$
- $\{q\}^{\omega}$
and it should reject
- \emptyset^{ω}
- $\{p\}^{\omega}$

Solution 2 CTL $(1+1+1+1=4$ points)
(a) EFp but not EFAG p

(b) EFAG p but not AGEF p

(c) AGEF p but not AGAF p

(d) $\mathbf{A G A F} p$ but not $\mathbf{A G} p$

Solution 3 Partial order reduction ($1+1+1+1+1=5$ points)

(a) $I=\{(a, c),(c, a),(b, c),(c, b)\}$. It cannot include $\{(a, b),(b, a)\}$ because the diamond property is violated in s_{3}.
(b) $\{a\}$
(c) No, C1 is violated because b can be executed before a.
(d) No, C2 is violated because b is visible.
(e) (i) C 0 is satisfied because $\operatorname{red}\left(s_{2}\right)$ is not empty.
(ii) C 1 is satisfied. The only path from s_{2} which doesn't execute a is $s_{2} \xrightarrow{c} s_{5} \xrightarrow{a} s_{7} \ldots$ and in this path, no action dependent on a is executed before a (since $(a, c) \in I$).
(iii) C 2 is satisfied because a is invisible.
(iv) C 3 is satisfied because in the reduced Kripke structure, the only two cycles are at s_{3} and s_{7}, and red of both these states will be non-empty because en is non-empty.

Solution 4 BDDs $\quad(3+3=6$ points $)$

 ...
Solution 5 Abstraction refinement ($2+1+2=5$ points)

(a) First abstraction:

$$
\begin{aligned}
& a_{0}=\left\{s_{0}, s_{2}, s_{3}\right\} \\
& a_{1}=\left\{s_{1}, s_{4}\right\}
\end{aligned}
$$

(b) Counter-example: $a_{0}{ }^{\omega}$. We have $\left|a_{0}\right|=3$, so we unroll the loop 4 times:
$\rightarrow s_{0} a_{0} a_{0}$

Fails to concretize in 1 step, so we realize that we need to refine. The states which are reachable from the initial state should be distinguished from the states which still have successors. We introduce:

$$
\begin{aligned}
a_{00} & =\left\{s_{0}\right\}, \\
a_{01} & =\left\{s_{2}, s_{3}\right\}, \\
a_{1} & =\left\{s_{1}, s_{4}\right\} .
\end{aligned}
$$

Counter-example: $a_{00} a_{1} a_{01} a_{01}{ }^{\omega}$:
a_{00}
$s_{0} \longrightarrow s_{1} \longrightarrow a_{2} \longrightarrow a_{01}$
$s_{4} \longrightarrow a_{3}$$a_{0}$

We split s_{2} and s_{3}, and introduce:

$$
\begin{aligned}
a_{010} & =\left\{s_{2}\right\}, \\
a_{011} & =\left\{s_{3}\right\} .
\end{aligned}
$$

We obtain the following which satisfies GF p :

Solution 6 Simulations and Bisimulations (2 $+2=4$ points)

(a) Yes: $\{(a, x),(b, v),(c, v),(d, w)\}$.
(b) No, we prove by contradiction. Assume there \mathcal{K}_{1} simulates \mathcal{K}_{2} and let H be the simulation. Since x and a are the respective initial states, $(x, a) \in H$. Since $(x, a) \in H$ and $x \rightarrow u$ where u is black, there must exist a black state in \mathcal{K}_{1} with a transition from a. The only candidate in this case is d. Hence, $(u, d) \in H$. By a similar argument, if $(u, d) \in H$ and $u \rightarrow v$ where v is white, then there must exist a white state in \mathcal{K}_{1} with a transition from d - which is not the case. Hence \mathcal{K}_{1} does not simulate \mathcal{K}_{2}.
(c) Merge x and u in \mathcal{K}_{2} to get \mathcal{K}_{3} as shown below.

Define the bisimulation relation is as follows: $H=\left\{\left(x, u^{\prime}\right)_{,}\left(u, u^{\prime}\right),\left(v, v^{\prime}\right),\left(w, w^{\prime}\right)\right\}$. Then H must be a simulation from \mathcal{K}_{2} to \mathcal{K}_{3} and $H^{\prime}=\{(t, s) \mid(s, t) \in H\}$ must be a simulation from \mathcal{K}_{3} to \mathcal{K}_{2}. First we prove that H is indeed a simulation from \mathcal{K}_{2} to \mathcal{K}_{3}. We have
(i) $\left(x, u^{\prime}\right) \in H, x \rightarrow u$ and $u^{\prime} \rightarrow u^{\prime},\left(u, u^{\prime}\right) \in H$.
(ii) $\left(x, u^{\prime}\right) \in H, x \rightarrow v$ and $u^{\prime} \rightarrow v^{\prime},\left(v, v^{\prime}\right) \in H$.
(iii) $\left(x, u^{\prime}\right) \in H, x \rightarrow w$ and $u^{\prime} \rightarrow w^{\prime},\left(w, w^{\prime}\right) \in H$.
(iv) $\left(u, u^{\prime}\right) \in H, u \rightarrow u$ and $u^{\prime} \rightarrow u^{\prime},\left(u, u^{\prime}\right) \in H$.
(v) $\left(u, u^{\prime}\right) \in H, u \rightarrow v$ and $u^{\prime} \rightarrow v^{\prime},\left(v, v^{\prime}\right) \in H$.
(vi) $\left(u, u^{\prime}\right) \in H, u \rightarrow w$ and $u^{\prime} \rightarrow w^{\prime},\left(w, w^{\prime}\right) \in H$.
(vii) $\left(u, u^{\prime}\right) \in H, u \rightarrow x$ and $u^{\prime} \rightarrow u^{\prime},\left(x, u^{\prime}\right) \in H$.
(viii) $\left(v, v^{\prime}\right) \in H, v \rightarrow u$ and $v^{\prime} \rightarrow u^{\prime},\left(u, u^{\prime}\right) \in H$.
(ix) $\left(v, v^{\prime}\right) \in H, v \rightarrow w$ and $v^{\prime} \rightarrow w^{\prime},\left(w, w^{\prime}\right) \in H$.
(x) $\left(v, v^{\prime}\right) \in H, v \rightarrow x$ and $v^{\prime} \rightarrow u^{\prime},\left(x, u^{\prime}\right) \in H$.

Now we prove H^{\prime} is a simulation from \mathcal{K}_{3} to \mathcal{K}_{2}.
(i) $\left(u^{\prime}, x\right) \in H^{\prime}, u^{\prime} \rightarrow u^{\prime}$ and $x \rightarrow u,\left(u^{\prime}, u\right) \in H^{\prime}$.
(ii) $\left(u^{\prime}, x\right) \in H^{\prime}, u^{\prime} \rightarrow v^{\prime}$ and $x \rightarrow v,\left(v^{\prime}, v\right) \in H^{\prime}$.
(iii) $\left(u^{\prime}, x\right) \in H^{\prime}, u^{\prime} \rightarrow w^{\prime}$ and $x \rightarrow w,\left(w^{\prime}, w\right) \in H^{\prime}$.
(iv) $\left(v^{\prime}, v\right) \in H^{\prime}, v^{\prime} \rightarrow u^{\prime}$ and $v \rightarrow u,\left(u^{\prime}, u\right) \in H^{\prime}$.
(v) $\left(v^{\prime}, v\right) \in H^{\prime}, v^{\prime} \rightarrow w^{\prime}$ and $v \rightarrow w,\left(w^{\prime}, w\right) \in H^{\prime}$.

Solution $7 \quad$ Pushdown systems $\quad(3+3+2=8$ points)

(a) The stack alphabet is $\Gamma=\left\{f_{0}, f_{1}, f_{2}, b_{0}, b_{1}\right\}$ and the pushdown system is as follows:

(b)

(c) The regular expression is $x_{0} f_{0}+x_{1} f_{1}$. No, there is no such configuration since the \mathcal{P}-automaton obtained in (b) accepts both $x_{0} f_{0}$ and $x_{1} f_{1}$.

