Model Checking - Exercise sheet 9

The first two exercises in this sheet are based on the following Kripke structure. The goal of this session is to understand the usage of Binary Decision Diagrams (BDDs) in CTL Model Checking. The CTL formula which we shall consider is $\phi=x \mathbf{E U}(y \wedge z)$. The following exercises will walk you through all the steps involved in the algorithm.

Exercise 9.1

Compute a multi-BDD for the three sets of states satisfying y, z, and $y \wedge z$, respectively. For this, first construct the multi-BDD for the sets y and z, and then compute the BDD for $y \wedge z$ using the algorithm for intersection described in the lecture. Encode each state s_{0}, \ldots, s_{7} using three bits in the obvious way:

$$
s_{0} \mapsto 000, s_{1} \mapsto 001, \ldots, s_{7} \mapsto 111
$$

Draw first the full binary tree for the set, then merge all isomorphic subgraphs, and finally prune all redundant nodes, including the 0 node.

Exercise 9.2

Recall the steps involved in model checking of EU. $\llbracket p \mathbf{E U} q \rrbracket$ is the least fixed point of the sequence $\emptyset=X_{0}, X_{1}, X_{2} \ldots$ where $X_{i+1}=\mu(q) \cup\left(\mu(p) \cap \operatorname{pre}\left(X_{i}\right)\right)$.

Let TS be the transition relation of the Kripke structure.

$$
T S=\left\{\left(s_{0}, s_{2}\right),\left(s_{0}, s_{4}\right), \ldots,\left(s_{7}, s_{6}\right)\right\}
$$

1. Compute the set X_{1} explicitly (not as a BDD).
2. Compute a multi-BDD for X_{1} and $\operatorname{pre}\left(X_{1}\right)$, proceeding as follows
(a) Compute a multi-BDD for $T S$ and $S \times X_{1}$. Think of states in X_{1} being encoded by $a_{0}^{\prime} a_{1}^{\prime} a_{2}^{\prime}$; states in S being encoded by $a_{0} a_{1} a_{2}$
(b) Transform it into a multi-BDD for $T S, S \times X_{1}$, and $T S \cap\left(S \times X_{1}\right)$.
(c) Use $\exists b B=B[b \backslash 0] \vee B[b \backslash 1]$ to compute $\exists a_{0}^{\prime} a_{1}^{\prime} a_{2}^{\prime} \mathrm{TS} \cap\left(S \times X_{1}\right)$
3. \star Compute X_{2}, X_{3} and construct a multi-BDD for X_{1}, X_{2}, X_{3}.

Remark: Feel free to make use of Obst (https://www7. in. tum. de/tools/obst/) for this exercise

Exercise 9.3

Give a formula containing 3 boolean variables which induces the largest BDD (after merging isomorphic subgraphs, removing redundant nodes and ignoring the \perp or 0 node).

Solution 9.1

Use the Obst tool to build $x=\{0,1,2,4\}$ and $y=\{0,2,5,6\}$. Then run the intersection of the top level nodes. This would give a BDD which must be isomorphic to the BDD you construct by hand.

Solution 9.3
$(x \wedge \neg y \wedge \neg z) \vee(\neg x \wedge y \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z) \vee(x \wedge y \wedge z)$

