
Technische Universität München (I7)
J. Esparza / P. Ashok / T. Meggendorfer

Summer Semester 2019
27.06.2019

Model Checking – Exercise sheet 8

Exercise 8.1

Consider an elevator system that services N > 0 floors numbered 0 through N − 1. There
is an elevator door at each floor with a call button and an indicator light that signals
whether or not the elevator has been called. In the elevator cabin there are N send
buttons (one per floor) and N indicator lights that inform to which floor(s) is going to be
sent. For simplicity consider N = 4. Present a set of atomic propositions (try to minimize
the number of propositions) that are needed to describe the following properties of the
elevator system as CTL formulae and give the corresponding CTL formulae

1. The doors are “safe”, i.e., a floor door is never open if the cabin is not present at the
given floor.

2. The indicator lights correctly reflect the current requests. That is, each time a
button is pressed, there is a corresponding request that needs to be memorized until
fulfillment (if ever).

3. The elevator only services the requested floors and does not move when there is no
request.

4. All requests are eventually satisfied.

(This above exercise is taken from ‘Principles of Model Checking’)

Exercise 8.2

Create a NuSMV model for the following Kripke structure over AP = {p, q}:

{p}
s0

{p, q}
s1

{p}
s2

∅
s3

Use NuSMV to model check each of the following formulas. Explain in words if the formula
holds, or give a counterexample otherwise.

1

(a) EG p,

(b) AX AF EG p,

(c) p AU q,

(d) AG(p→ AX p),

(e) EX(¬q ∧ (¬p EU q)).

Exercise 8.3

Model the following stack system in NuSMV:

The stack system consists of three input interfaces: push, pop, in val; and one
output interface: out val. The values of push and pop can be either true or
false, while in val and out val can take any number between 0 and 9.

When push is true, the system takes the input from in val and pushes it
onto its internal stack. When pop is true, the system removes the value on
the top of the stack and outputs it via out val. It is forbidden to call push
and pop at the same time. The size of the stack is 5, i.e. the stack is full if
there are 5 pushes without a pop. When the stack is full, it ignores push and
in val. Similarly, the system ignores pop when the stack is empty. The value
of out val is undefined if the stack is empty or pop is false.

Write the following properties in CTL and use NuSMV to model check the formulas:

(a) The stack cannot be empty and full at the same time.

(b) There exists a path along which the stack is eventually always full.

(c) From any given point of time, there always exists a path in which the stack will be
full.

(d) The stack cannot be empty after a push.

(e) The internal stack is correctly updated after a push or pop.

(f) Whenever the stack is full, there exists a path in which the stack stays full forever or
it remains full until a pop.

(g) For every push, there exists a path that pops the value without pushing another value.

(h) After every pop, out val holds the correct value.

2

Solution 8.2

MODULE main

VAR

state : {s0, s1, s2, s3};

ASSIGN

init(state) := s0;

next(state) :=

case

state = s0 : {s1, s2};

state = s1 : s3;

state = s2 : {s0, s1, s2};

state = s3 : s2;

esac;

DEFINE

p := state = s0 | state = s1 | state = s2;

q := state = s1;

SPEC

EG p

SPEC

AX AF EG p

SPEC

A [p U q]

SPEC

AG (p -> AX p)

SPEC

EX (!q & E [!p U q])

Solution 8.3

MODULE main

VAR

op : 0..2;

in_val : 0..9;

out_val : 0..9;

ptr : 0..5;

arr : array 0..4 of 0..9;

FROZENVAR

i : 0..4;

x : 0..9;

DEFINE

empty := (ptr = 0);

full := (ptr = 5);

push := (op = 0);

3

pop := (op = 1);

ASSIGN

init(ptr) := 0;

next(ptr) := case

push & !full : ptr + 1;

pop & !empty : ptr - 1;

TRUE : ptr;

esac;

next(arr[0]) := push & ptr = 0 ? in_val : arr[0];

next(arr[1]) := push & ptr = 1 ? in_val : arr[1];

next(arr[2]) := push & ptr = 2 ? in_val : arr[2];

next(arr[3]) := push & ptr = 3 ? in_val : arr[3];

next(arr[4]) := push & ptr = 4 ? in_val : arr[4];

next(out_val) := case

pop & !empty : arr[ptr - 1];

TRUE : out_val;

esac;

-- (a) The stack cannot be empty and full at the same time.

SPEC

AG !(empty & full)

-- (b) There exists a path along which the stack is eventually always full.

SPEC

EF EG full

-- (c) From any given point of time, there always exists a path in

-- which the stack will be full.

SPEC

AG EF full

-- (d) The stack cannot be empty after a push.

SPEC

AG (push -> AX !empty)

-- (e) The internal stack is correctly updated after a push or a pop.

SPEC

AG ((push & !full & in_val = x & ptr = i) -> (AX (arr[i] = x)))

SPEC

AG ((push & !full & ptr = i) -> (AX (ptr = i + 1)))

4

SPEC

AG ((pop & !empty & ptr = i) -> (AX (ptr = i - 1)))

SPEC

AG ((push & ptr >= 4) -> (AX full))

SPEC

AG ((pop & ptr <= 1) -> (AX empty))

-- (f) Whenever the stack is full, there exists a path in which the

-- stack stays full forever or it remains full until a pop.

SPEC

AG (full -> ((EG full) | E[full U pop]))

-- (g) For every push, there exists a path that pops the value without

-- pushing another value.

SPEC

AG (push -> EX E[!push U pop])

-- (h) After every pop, out_val holds the correct value

SPEC

AG ((pop & !empty & arr[ptr - 1] = x) -> (AX (out_val = x)))

5

