Model Checking - Exercise sheet 8

Exercise 8.1

Consider an elevator system that services $N>0$ floors numbered 0 through $N-1$. There is an elevator door at each floor with a call button and an indicator light that signals whether or not the elevator has been called. In the elevator cabin there are N send buttons (one per floor) and N indicator lights that inform to which floor(s) is going to be sent. For simplicity consider $N=4$. Present a set of atomic propositions (try to minimize the number of propositions) that are needed to describe the following properties of the elevator system as CTL formulae and give the corresponding CTL formulae

1. The doors are "safe", i.e., a floor door is never open if the cabin is not present at the given floor.
2. The indicator lights correctly reflect the current requests. That is, each time a button is pressed, there is a corresponding request that needs to be memorized until fulfillment (if ever).
3. The elevator only services the requested floors and does not move when there is no request.
4. All requests are eventually satisfied.
(This above exercise is taken from 'Principles of Model Checking')

Exercise 8.2

Create a NuSMV model for the following Kripke structure over $A P=\{p, q\}$:

Use NuSMV to model check each of the following formulas. Explain in words if the formula holds, or give a counterexample otherwise.
(a) EG p,
(b) AX AF EG p,
(c) $p \mathbf{A U} q$,
(d) $\mathbf{A G}(p \rightarrow \mathbf{A X} p)$,
(e) $\boldsymbol{E X}(\neg q \wedge(\neg p \mathbf{E U} q))$.

Exercise 8.3

Model the following stack system in NuSMV:
The stack system consists of three input interfaces: push, pop, in_val; and one output interface: out_val. The values of push and pop can be either true or false, while in_val and out_val can take any number between 0 and 9 .
When push is true, the system takes the input from in_val and pushes it onto its internal stack. When pop is true, the system removes the value on the top of the stack and outputs it via out_val. It is forbidden to call push and pop at the same time. The size of the stack is 5 , i.e. the stack is full if there are 5 pushes without a pop. When the stack is full, it ignores push and in_val. Similarly, the system ignores pop when the stack is empty. The value of out_val is undefined if the stack is empty or pop is false.

Write the following properties in CTL and use NuSMV to model check the formulas:
(a) The stack cannot be empty and full at the same time.
(b) There exists a path along which the stack is eventually always full.
(c) From any given point of time, there always exists a path in which the stack will be full.
(d) The stack cannot be empty after a push.
(e) The internal stack is correctly updated after a push or pop.
(f) Whenever the stack is full, there exists a path in which the stack stays full forever or it remains full until a pop.
(g) For every push, there exists a path that pops the value without pushing another value.
(h) After every pop, out_val holds the correct value.

Solution 8.2
MODULE main
VAR
state : \{s0, s1, s2, s3\};
ASSIGN
init(state) := s0;
next(state) :=
case
state = s0 : \{s1, s2\};
state = s1 : s3;
state $=$ s2 : \{s0, s1, s2\};
state = s3 : s2;
esac;
DEFINE
$\mathrm{p}:=$ state $=$ s0 | state $=$ s1 | state = s2;
q := state = s1;
SPEC
EG p
SPEC
AX AF EG p
SPEC
A [p U q]
SPEC
AG (p-> AX p)
SPEC
EX (!q \& E [!p U q])

Solution 8.3
MODULE main
VAR
op : 0..2;
in_val : 0..9;
out_val : 0..9;
ptr : 0..5;
arr : array 0..4 of 0..9;
FROZENVAR
i : 0..4;
x : 0..9;
DEFINE
empty := (ptr = 0);
full := (ptr = 5);
push := (op = 0);

```
    pop := (op = 1);
ASSIGN
    init(ptr) := 0;
    next(ptr) := case
                            push & !full : ptr + 1;
                            pop & !empty : ptr - 1;
                            TRUE : ptr;
                            esac;
    next(arr[0]) := push & ptr = 0 ? in_val : arr[0];
    next(arr[1]) := push & ptr = 1 ? in_val : arr[1];
    next(arr[2]) := push & ptr = 2 ? in_val : arr[2];
    next(arr [3]) := push & ptr = 3 ? in_val : arr [3];
    next(arr [4]) := push & ptr = 4 ? in_val : arr[4];
    next(out_val) := case
                        pop & !empty : arr[ptr - 1];
                            TRUE : out_val;
        esac;
```

-- (a) The stack cannot be empty and full at the same time.
SPEC
AG ! (empty \& full)
-- (b) There exists a path along which the stack is eventually always full. SPEC

EF EG full
-- (c) From any given point of time, there always exists a path in
-- which the stack will be full.
SPEC
AG EF full
-- (d) The stack cannot be empty after a push.
SPEC
AG (push -> AX !empty)
-- (e) The internal stack is correctly updated after a push or a pop. SPEC

AG ((push \& !full \& in_val = x \& ptr = i) $->(A X(\operatorname{arr}[i]=x)))$

SPEC
AG ((push \& !full \& ptr = i) -> (AX (ptr = i + 1)))

SPEC
AG ((pop \& !empty \& ptr = i) $->(\operatorname{AX}(p t r=i-1)))$
SPEC
AG ((push \& ptr >= 4) -> (AX full))

SPEC
AG ((pop \& ptr <= 1) \rightarrow (AX empty))
-- (f) Whenever the stack is full, there exists a path in which the -- stack stays full forever or it remains full until a pop.
SPEC
AG (full -> ((EG full) | E[full U pop]))
-- (g) For every push, there exists a path that pops the value without -- pushing another value.
SPEC
AG (push \rightarrow EX E[!push U pop])
-- (h) After every pop, out_val holds the correct value SPEC

AG ((pop \& !empty \& arr $[$ ptr - 1] $=x)$ $\left.\rightarrow\left(A X\left(o u t _v a l=x\right)\right)\right)$

