Model Checking – Exercise sheet 7

Exercise 7.1

Given two CTL formulas ϕ_1 and ϕ_2 , we write $\phi_1 \Rightarrow \phi_2$ iff for every Kripke structure \mathcal{K} we have $(\mathcal{K} \models \phi_1) \Rightarrow (\mathcal{K} \models \phi_2)$. Furthermore, we define an *implication graph* as a directed graph whose nodes are CTL formulas, and that contains an edge from ϕ_1 to ϕ_2 iff $\phi_1 \Rightarrow \phi_2$. Let $AP = \{p\}$.

- (a) Draw an implication graph with the nodes: EFEFp, EGEGp, AFAFp, AGAGp.
- (b) For each implication $\phi_1 \Rightarrow \phi_2$ obtained in (a), give a Kripke structure \mathcal{K} that satisfies ϕ_2 but not ϕ_1 , i.e. give a \mathcal{K} such that $\mathcal{K} \models \phi_2$ and $\mathcal{K} \not\models \phi_1$.
- (c) Add the following CTL formulas to the implication graph obtained in (a): $\mathbf{AFEF}p$, $\mathbf{EFAF}p$, $\mathbf{AGEG}p$, $\mathbf{EGAG}p$.
- (d) Complete the graph obtained in (c) with the nodes: AGAFp, AFAGp, AGEFp, EGAFp, AFEGp, EFAGp, EFEGp, EGEFp.

Exercise 7.2

Consider the following Kripke structure over $AP = \{p, q\}$:

- (a) Compute $\llbracket \mathbf{E}\mathbf{G}q \rrbracket$ and $\llbracket \mathbf{E}\mathbf{F}q \rrbracket$.
- (b) Compute $\llbracket \mathbf{A}\mathbf{G}\mathbf{A}\mathbf{F}p \rrbracket$ and $\llbracket \mathbf{E}\mathbf{F}\mathbf{A}\mathbf{G}\neg q \rrbracket$.

Solution 7.1

Note that the " \Rightarrow " relation is transitive, hence all transitive edges in (a), (b) and (d) are omitted.

(a)

(b) The following Kripke structure satisfies $\mathbf{EG}p$, but not $\mathbf{AG}p$:

The following Kripke structure satisfies $\mathbf{AF}p$, but not $\mathbf{EG}p$:

The following Kripke structure satisfies $\mathbf{EF}p$, but not $\mathbf{AF}p$:

(c)

(d)

Solution 7.2

Let $S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}.$

(a) • We compute the largest fixed point from the sequence

 $\pi^{0}(S), \pi^{1}(S), \pi^{2}(S), \dots$ where $\pi^{0}(S) = S$ and $\pi^{i+1}(S) = \llbracket q \rrbracket \cap pre(\pi^{i}(S))$. We obtain $\pi^{0}(S) = S,$ $\pi^{1}(S) = \{s_{0}, s_{4}, s_{5}, s_{7}\},$ $\pi^{2}(S) = \{s_{0}, s_{4}, s_{5}, s_{7}\}.$

Therefore, $[\![\mathbf{E}\mathbf{G}q]\!] = \{s_0, s_4, s_5, s_7\}.$

• We compute the smallest fixed point from the sequence

$$\xi^0(\emptyset), \xi^1(\emptyset), \xi^2(\emptyset), \dots$$

where $\xi^0(\emptyset) = \emptyset$ and $\xi^{i+1}(\emptyset) = \llbracket q \rrbracket \cup pre(\xi^i(\emptyset))$. We obtain

$$\begin{split} \xi^{0}(\emptyset) &= \emptyset, \\ \xi^{1}(\emptyset) &= \{s_{0}, s_{4}, s_{5}, s_{7}\}, \\ \xi^{2}(\emptyset) &= \{s_{0}, s_{4}, s_{5}, s_{6}, s_{7}\}, \\ \xi^{3}(\emptyset) &= \{s_{0}, s_{4}, s_{5}, s_{6}, s_{7}\}. \end{split}$$

Therefore, $[\![\mathbf{EF}q]\!] = \{s_0, s_4, s_5, s_6, s_7\}.$

(b) • Note that $\mathbf{AGAF}p \equiv \neg \mathbf{EFEG} \neg p$. Let us first compute $\llbracket \mathbf{EG} \neg p \rrbracket$ by computing the largest fixed point from the sequence $\pi^0(S), \pi^1(S), \pi^2(S), \ldots$ We obtain

$$\pi^{0}(S) = S,$$

$$\pi^{1}(S) = \{s_{0}, s_{2}, s_{5}, s_{7}\},$$

$$\pi^{2}(S) = \{s_{7}\},$$

$$\pi^{3}(S) = \{s_{7}\}.$$

Therefore, $\llbracket \mathbf{E}\mathbf{G}\neg p \rrbracket = \{s_7\}$. In general, $\llbracket \mathbf{E}\mathbf{F}\varphi \rrbracket$ is the set of states that can reach some state of $\llbracket \varphi \rrbracket$. By setting $\varphi = \mathbf{E}\mathbf{G}\neg p$, we obtain

$$\begin{bmatrix} \mathbf{AGAF}p \end{bmatrix} = \begin{bmatrix} \neg \mathbf{EFEG} \neg p \end{bmatrix}$$
$$= \boxed{\begin{bmatrix} \mathbf{EFEG} \neg p \end{bmatrix}}$$
$$= \overline{\{s_0, s_6, s_7\}}$$
$$= \{s_1, s_2, s_3, s_4, s_5\}.$$

• Note that $\mathbf{EFAG} \neg q \equiv \mathbf{EF} \neg \mathbf{EF}q$. By (a), $\llbracket \mathbf{EF}q \rrbracket = \{s_0, s_4, s_5, s_6, s_7\}$, and hence $\llbracket \neg \mathbf{EF}q \rrbracket = \llbracket \mathbf{EF}q \rrbracket = \{s_1, s_2, s_3\}$. In general, $\llbracket \mathbf{EF}\varphi \rrbracket$ is the set of states that can reach some state of $\llbracket \varphi \rrbracket$. By setting $\varphi = \neg \mathbf{EF}q$, we obtain

$$\llbracket \mathbf{EFAG} \neg q \rrbracket = \llbracket \mathbf{EF} \neg \mathbf{EF} q \rrbracket = \{s_0, s_1, s_2, s_3, s_4, s_5\}.$$