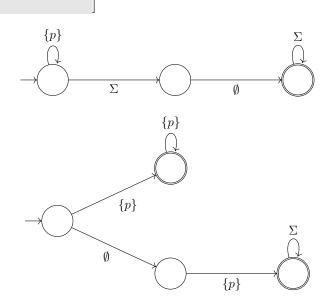
Model Checking – Exercise sheet 4

Exercise 4.1

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give Büchi automata recognizing the ω -languages over Σ defined by the following LTL formulas:

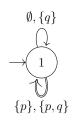

- (a) $\mathbf{X}\mathbf{G}\neg p$
- (b) $(\mathbf{GF}p) \to (\mathbf{F}q)$
- (c) $p \land \neg(\mathbf{XF}p)$
- (d) $\mathbf{G}(p \mathbf{U} (p \rightarrow q))$
- (e) $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p))$

Exercise 4.2

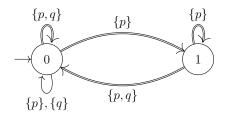
Given $L = \{\{p\}^m \{q\}^n \emptyset^\omega : m \leq n\}$, show that there is no Büchi automata recognizing L. [Hint:

Exercise 4.3

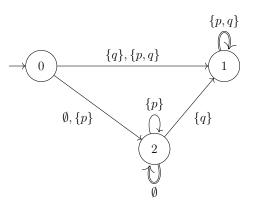
Let $AP = \{p\}$. Given two Büchi automata recognizing ω -regular languages over $\Sigma = 2^{AP}$, prove or disprove that one is the negation of the other. [Hint:


Exercise 4.4

Given $AP = \{p\}$, come up with an LTL formula (without **X**) over $\Sigma = 2^{AP}$ which might have the largest automaton (use Spot).


Exercise 4.5

Convert the following Büchi automata with transition-based acceptance condition ("doubled"transitions have to be seen infinitely often) to equivalent Büchi automata with state-based acceptance conditions. Moreover, give a general procedure to perform this conversion.


(a)

(b)

(c)

