Model Checking – Exercise sheet 3

Last updated on 27.05.2019

Exercise 3.1

Using the *Compare* feature in Spot (https://spot.lrde.epita.fr/app) give an LTL formula equivalent to

- (a) $p \mathbf{R} q$, which does not contain \neg but may contain \mathbf{U}, \mathbf{G} or \mathbf{F} .
- (b) $(\mathbf{G}p)$ **U** q which does not contain **U**.
- (c) $(\mathbf{F}p)$ **U** q, which does not contain **U**.

Exercise 3.2

Discuss the difference between the following LTL formulae in words.

(a)
$$\mathbf{G}(q \wedge \neg r \to (\neg r \mathbf{W}(p \wedge \neg r)))$$
 and $\mathbf{G}(q \wedge \neg r \to (\neg r \mathbf{U}(p \wedge \neg r)))$

(b)
$$\mathbf{G}((q \wedge \neg r \wedge \mathbf{F}r) \to (p \mathbf{U} r))$$
 and $\mathbf{G}(q \wedge \neg r \to (p \mathbf{W} r))$

Exercise 3.3

Think of a way to use Spot to check if a word α satisfies an LTL formula ϕ . Check if the word $\{q\}\emptyset\{s\}\emptyset\{p\}^{\omega}$ satisfies $\mathbf{G}\neg q\vee \mathbf{F}(q\wedge (\neg p\mathbf{W}s))$.

Exercise 3.4

Challenge: what is the largest LTL formula you can come up with using only one atomic proposition p and without using the \mathbf{X} operator, which Spot is unable to simplify?

Exercise 3.5

Convert the following ω -regular expressions to LTL formulae. A literal character $x \in \Sigma$ denotes the set containing only x and ϵ denotes the set containing only the empty string. x^* denotes the *Kleene star* operation on x, x+y denotes alternation (or operator) and . (dot) operator denotes concatenation.

(a)
$$\{p\}^*.\{q\}^*.\{p\}^{\omega}$$

(b)
$$((\{s\} + \epsilon)^* + \{t\}.(\{t\} + \epsilon)^*.\{s\})^{\omega}$$

(c)
$$(\{p\},\{p\}^*,\epsilon^*)^{\omega}$$

Figure 1: \mathcal{K}_1

Figure 2: \mathcal{K}_2

Exercise 3.6

Given the following Kripke structures and LTL formulae, answer the following questions

- (a) Which of $\mathcal{K}_1, \mathcal{K}_2$ and \mathcal{K}_3 satisfy $\phi = \mathbf{G}(\mathbf{X}q \to p)$?
- (b) Give an LTL formula which exactly characterizes \mathcal{K}_3 , i.e. both the formula and the Kripke structure accept exactly the same words.

Figure 3: \mathcal{K}_3

Solution 3.1

- (a) $(q \mathbf{U} (p \wedge q)) \vee \mathbf{G}q$
- (b) $(\mathbf{F}q \wedge \mathbf{G}p) \vee q$.
- (c) $\mathbf{F}(q \wedge \mathbf{F}p) \vee \mathbf{F}(p \wedge \mathbf{X}q) \vee \mathbf{G}q \vee q$ or better solution from class: $q \vee \mathbf{F}(\mathbf{F}p \wedge \mathbf{X}q)$

Solution 3.2

See http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml

- (a) (Existence) p becomes true between q and r vs p becomes true after q until r
- (b) (Universality) p is true between q and r vs p is true after q until r.

Solution 3.3

Use X, XX and so on to describe the word. Then run compare.

Solution 3.4

$$p \mathbf{U} (\neg p \wedge (\neg p \mathbf{U} (p \wedge (p \mathbf{U} (\neg p \wedge (\neg p \mathbf{U} p))))))$$

Solution 3.5

- (a) $p \mathbf{U} (q \mathbf{U} \mathbf{G} p)$
- (b) $\mathbf{G}(t \to \mathbf{XF}s)$
- (c) $p \wedge \mathbf{XGF}p$

Solution 3.6

- (a) \mathcal{K}_1
- (b) $\mathbf{G}(p \to \mathbf{X}q)$