Model Checking - Exercise sheet 3

Last updated on 27.05.2019

Exercise 3.1

Using the Compare feature in Spot (https://spot.lrde.epita.fr/app) give an LTL formula equivalent to
(a) $p \mathbf{R} q$, which does not contain \neg but may contain \mathbf{U}, \mathbf{G} or \mathbf{F}.
(b) $(\mathbf{G} p) \mathbf{U} q$ which does not contain \mathbf{U}.
(c) $(\mathbf{F} p) \mathbf{U} q$, which does not contain \mathbf{U}.

Exercise 3.2

Discuss the difference between the following LTL formulae in words.
(a) $\mathbf{G}(q \wedge \neg r \rightarrow(\neg r \mathbf{W}(p \wedge \neg r)))$ and $\mathbf{G}(q \wedge \neg r \rightarrow(\neg r \mathbf{U}(p \wedge \neg r)))$
(b) $\mathbf{G}((q \wedge \neg r \wedge \mathbf{F} r) \rightarrow(p \mathbf{U} r))$ and $\mathbf{G}(q \wedge \neg r \rightarrow(p \mathbf{W} r))$

Exercise 3.3

Think of a way to use Spot to check if a word α satisfies an LTL formula ϕ. Check if the word $\{q\} \emptyset\{s\} \emptyset\{p\}^{\omega}$ satisfies $\mathbf{G} \neg q \vee \mathbf{F}(q \wedge(\neg p \mathbf{W} s))$.

Exercise 3.4
Challenge: what is the largest LTL formula you can come up with using only one atomic proposition p and without using the \mathbf{X} operator, which Spot is unable to simplify?

Exercise 3.5

Convert the following ω-regular expressions to LTL formulae. A literal character $x \in \Sigma$ denotes the set containing only x and ϵ denotes the set containing only the empty string. x^{*} denotes the Kleene star operation on $x, x+y$ denotes alternation (or operator) and . (dot) operator denotes concatenation.
(a) $\{p\}^{*} \cdot\{q\}^{*} \cdot\{p\}^{\omega}$
(b) $\left((\{s\}+\epsilon)^{*}+\{t\} \cdot(\{t\}+\epsilon)^{*} \cdot\{s\}\right)^{\omega}$
(c) $\left(\{p\} \cdot\{p\}^{*} \cdot \epsilon^{*}\right)^{\omega}$

Figure 1: \mathcal{K}_{1}

Figure 2: \mathcal{K}_{2}

Exercise 3.6

Given the following Kripke structures and LTL formulae, answer the following questions
(a) Which of $\mathcal{K}_{1}, \mathcal{K}_{2}$ and \mathcal{K}_{3} satisfy $\phi=\mathbf{G}(\mathbf{X} q \rightarrow p)$?
(b) Give an LTL formula which exactly characterizes \mathcal{K}_{3}, i.e. both the formula and the Kripke structure accept exactly the same words.

Figure 3: \mathcal{K}_{3}

Solution 3.1

(a) $(q \mathbf{U}(p \wedge q)) \vee \mathbf{G} q$
(b) $(\mathbf{F} q \wedge \mathbf{G} p) \vee q$.
(c) $\mathbf{F}(q \wedge \mathbf{F} p) \vee \mathbf{F}(p \wedge \mathbf{X} q) \vee \mathbf{G} q \vee q$ or
better solution from class: $q \vee \mathbf{F}(\mathbf{F} p \wedge \mathbf{X} q)$

Solution 3.2

See http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
(a) (Existence) p becomes true between q and r vs p becomes true after q until r
(b) (Universality) p is true between q and r vs p is true after q until r.

Solution 3.3

Use $\mathbf{X}, \mathbf{X X}$ and so on to describe the word. Then run compare.

Solution 3.4

$p \mathbf{U}(\neg p \wedge(\neg p \mathbf{U}(p \wedge(p \mathbf{U}(\neg p \wedge(\neg p \mathbf{U} p))))))$

Solution 3.5

(a) $p \mathbf{U}(q \mathbf{U} \mathbf{G} p)$
(b) $\mathbf{G}(t \rightarrow \mathbf{X F} s)$
(c) $p \wedge \mathbf{X G F} p$

Solution 3.6
(a) \mathcal{K}_{1}
(b) $\mathbf{G}(p \rightarrow \mathbf{X} q)$

