Model Checking – Exercise sheet 3

Last updated on 27.05.2019

Exercise 3.1

Using the *Compare* feature in Spot (https://spot.lrde.epita.fr/app) give an LTL formula equivalent to

- (a) $p \mathbf{R} q$, which does not contain \neg but may contain \mathbf{U}, \mathbf{G} or \mathbf{F} .
- (b) $(\mathbf{G}p) \mathbf{U} q$ which does not contain \mathbf{U} .
- (c) $(\mathbf{F}p) \mathbf{U} q$, which does not contain \mathbf{U} .

Exercise 3.2

Discuss the difference between the following LTL formulae in words.

- (a) $\mathbf{G}(q \wedge \neg r \to (\neg r \mathbf{W} (p \wedge \neg r)))$ and $\mathbf{G}(q \wedge \neg r \to (\neg r \mathbf{U} (p \wedge \neg r)))$
- (b) $\mathbf{G}((q \land \neg r \land \mathbf{F}r) \to (p \mathbf{U} r))$ and $\mathbf{G}(q \land \neg r \to (p \mathbf{W} r))$

Exercise 3.3

Think of a way to use Spot to check if a word α satisfies an LTL formula ϕ . Check if the word $\{q\}\emptyset\{s\}\emptyset\{p\}^{\omega}$ satisfies $\mathbf{G}\neg q \lor \mathbf{F}(q \land (\neg p \mathbf{W} s))$.

Exercise 3.4

Challenge: what is the largest LTL formula you can come up with using only one atomic proposition p and without using the **X** operator, which Spot is unable to simplify?

Exercise 3.5

Convert the following ω -regular expressions to LTL formulae. A literal character $x \in \Sigma$ denotes the set containing only x and ϵ denotes the set containing only the empty string. x^* denotes the *Kleene star* operation on x, x + y denotes *alternation* (or operator) and . (dot) operator denotes *concatenation*.

(a)
$$\{p\}^*.\{q\}^*.\{p\}^{\omega}$$

- (b) $((\{s\} + \epsilon)^* + \{t\}.(\{t\} + \epsilon)^*.\{s\})^{\omega}$
- (c) $(\{p\}.\{p\}^*.\epsilon^*)^{\omega}$

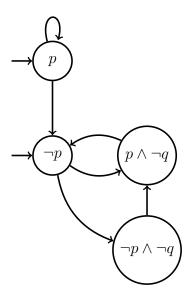


Figure 1: \mathcal{K}_1

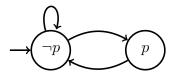


Figure 2: \mathcal{K}_2

Exercise 3.6

Given the following Kripke structures and LTL formulae, answer the following questions

- (a) Which of $\mathcal{K}_1, \mathcal{K}_2$ and \mathcal{K}_3 satisfy $\phi = \mathbf{G}(\mathbf{X}q \to p)$?
- (b) Give an LTL formula which exactly characterizes \mathcal{K}_3 , i.e. both the formula and the Kripke structure accept exactly the same words.

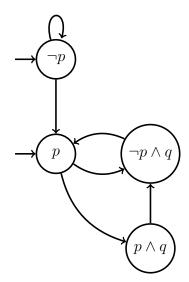


Figure 3: \mathcal{K}_3