Model Checking – Exercise sheet 2

Exercise 2.1

Let $\varphi = \mathbf{GF}p \to \mathbf{FG}(q \vee r)$ and $\psi = (r \mathbf{U} \mathbf{X}p) \mathbf{U} (q \wedge \neg \mathbf{X}\mathbf{X}s)$ be LTL formulas over the atomic propositions $AP = \{p, q, r, s\}$. Say whether the following sequences satisfy φ and ψ . Justify your answers.

- (a) \emptyset^{ω}
- (b) $\{p, q, r, s\}^{\omega}$
- (c) $\{p\}^{\omega}$
- (d) $\{q\}^{\omega}$
- (e) $\{p, q\}^{\omega}$

- (f) $\{r\}\emptyset\{p,q,s\}^{\omega}$
- (g) $\{r\}\emptyset(\{p,q\}\{r,s\})^{\omega}$
- (h) $\{r\}\emptyset\{p\}\{q,r\}(\{p,s\}\emptyset)^{\omega}$
- (i) $\{r\}\emptyset\{p\}\{p,q,r\}(\{s\}\emptyset)^{\omega}$
- (j) $\{q,r\}\emptyset\{p,q\}\emptyset\{r,s\}^{\omega}$

Exercise 2.2

Let $AP = \{s, r, g\}$ be actions of a process: sending a message, receiving a message, and giving a result, respectively. Specify the following properties in LTL, and give example sequences that satisfy and violate the formulas.

- (a) The process always gives a result.
- (b) The process stops communicating after giving its result.
- (c) The process sends infinitely many messages.
- (d) The process only gives a result once.
- (e) The process receives a message after it sends one.
- (f) The process does nothing until it receives a message.

Exercise 2.3

Let $AP = \{p, q\}$. An LTL formula is a tautology if it is satisfied by all sequences over 2^{AP} . Which of the following LTL formulas are tautologies? Justify each answer with a counterexample or a proof.

(a)
$$\mathbf{G}p \to \mathbf{F}p$$

(d)
$$\neg \mathbf{F}p \to \mathbf{F} \neg \mathbf{F}p$$

(b)
$$\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$$

(e)
$$\neg (p \mathbf{U} q) \leftrightarrow (\neg p \mathbf{U} \neg q)$$

(c)
$$\mathbf{FG}p \vee \mathbf{FG} \neg p$$

(f)
$$(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \ \mathbf{U} \ (p \lor q))$$

Solution 2.1

- (a) $\phi \bowtie \models \mathbf{GF}p \to \mathbf{FG}(q \vee r)$ since $\emptyset^{\omega} \not\models \mathbf{GF}p$ which follows from the fact that p does not occur infinitely often (or at all).
 - $\emptyset^{\omega} \not\models (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{X}\mathbf{X}s)$ since q never holds.
- (b) $\{p,q,r,s\}^{\omega} \models \mathbf{GF}p \to \mathbf{FG}(q \vee r) \text{ since } p \text{ occurs infinitely often and } q \text{ eventually always occur.}$
 - $\{p, q, r, s\}^{\omega} \not\models (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{X}\mathbf{X}s) \text{ since } \neg \mathbf{X}\mathbf{X}s \text{ never holds.}$
- (c) $\{p\}^{\omega} \not\models \mathbf{GF}p \to \mathbf{FG}(q \vee r)$ since $\{p\}^{\omega} \models \mathbf{GF}p$ but $\{p\}^{\omega} \not\models \mathbf{FG}(q \vee r)$. The former follows from the fact that p occurs infinitely often, and the latter from the fact that q and r never occur.
 - $\{p\}^{\omega} \not\models (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{X}\mathbf{X}s) \text{ since } q \text{ never occurs.}$
- (d) $\{q\}^{\omega} \models \mathbf{GF}p \to \mathbf{FG}(q \vee r) \text{ since } \{q\}^{\omega} \not\models \mathbf{GF}p \text{ which follows from the fact that } p \text{ does not occur infinitely often (or at all).}$
 - $\{q\}^{\omega} \models (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{X}\mathbf{X}s)$ since $(q \land \neg \mathbf{X}\mathbf{X}s)$ holds already at the first position of the sequence.
- (e) $\{p,q\}^{\omega} \models \mathbf{GF}p \to \mathbf{FG}(q \vee r)$ since p occurs infinitely often and q (eventually) always occur.
 - $\{p,q\}^{\omega} \models (r \cup Xp) \cup (q \land \neg XXs)$ since $(q \land \neg XXs)$ holds already at the first position of the sequence.
- (f) $\bullet \{r\}\emptyset\{p,q,s\}^{\omega} \models \mathbf{GF}p \to \mathbf{FG}(q \vee r) \text{ since } p \text{ occurs infinitely often and } q \text{ eventually always occur.}$
 - $\{r\}\emptyset\{p,q,s\}^{\omega} \not\models (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{X}\mathbf{X}s) \text{ since } (q \land \neg \mathbf{X}\mathbf{X}s) \text{ never holds.}$
- (g) $\bullet \{r\}\emptyset(\{p,q\}\{r,s\})^{\omega} \models \mathbf{GF}p \to \mathbf{FG}(q \vee r) \text{ since } p \text{ occurs infinitely often, and from position 2 onwards it is always the case that either <math>q$ or r holds.

- $\{r\}\emptyset(\{p,q\}\{r,s\})^{\omega} \models (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{X}\mathbf{X}s)$ since the left-hand side of the topmost \mathbf{U} holds at the two first positions, and the right-hand side holds at the third position. In more details:
 - $-\{r\}\emptyset(\{p,q\}\{r,s\})^{\omega} \models r \mathbf{U} \mathbf{X}p \text{ since } r \text{ holds at the first position and } \mathbf{X}p \text{ holds at the second position,}$
 - $-\emptyset(\{p,q\}\{r,s\})^{\omega} \models r \mathbf{U} \mathbf{X} p \text{ since } \mathbf{X} p \text{ holds at the first position,}$
 - $-(\{p,q\}\{r,s\})^{\omega} \models q \land \neg \mathbf{X}\mathbf{X}s \text{ since } q \text{ occurs at the first position and } s \text{ does not occur at the third position.}$
- (h) $\{r\}\emptyset\{p\}\{q,r\}(\{p,s\}\emptyset)^\omega \not\models \mathbf{GF}p \to \mathbf{FG}(q \vee r)$ since p occurs infinitely often but neither q nor r eventually always occur.
 - $\{r\}\emptyset\{p\}\{q,r\}(\{p,s\}\emptyset)^{\omega} \not\models (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{X}\mathbf{X}s) \text{ since } q \land \neg \mathbf{X}\mathbf{X}s \text{ only holds}$ at the fourth position and $r \cup \mathbf{X}p$ does not hold at the third position.
- (i) $\{r\}\emptyset\{p\}\{p,q,r\}(\{s\}\emptyset)^\omega \models \mathbf{GF}p \to \mathbf{FG}(q \vee r) \text{ since } p \text{ does not occur infinitely often.}$
 - $\{r\}\emptyset\{p\}\{p,q,r\}(\{s\}\emptyset)^\omega \models (r \ \mathbf{U} \ \mathbf{X}p) \ \mathbf{U} \ (q \land \neg \mathbf{X}\mathbf{X}s)$ since the left-hand side of the topmost \mathbf{U} holds at the three first positions, and the right-hand side holds at the fourth position. In more details:
 - $-\{r\}\emptyset\{p\}\{p,q,r\}(\{s\}\emptyset)^{\omega} \models r \mathbf{U} \mathbf{X}p \text{ since } r \text{ occurs at the first position and } \mathbf{X}p \text{ holds at the second position,}$
 - $-\emptyset\{p\}\{p,q,r\}(\{s\}\emptyset)^{\omega}\models r$ **U X**p since **X**p holds at the first position,
 - $-\{p\}\{p,q,r\}(\{s\}\emptyset)^{\omega} \models r \mathbf{U} \mathbf{X} p \text{ since } \mathbf{X} p \text{ holds at the first position,}$
 - $-\{p,q,r\}(\{s\}\emptyset)^{\omega} \models q \land \neg \mathbf{XX}s \text{ since } q \text{ occurs at the first position and } s \text{ does not occur at the third position.}$
- (j) $\{q,r\}\emptyset\{p,q\}\emptyset\{r,s\}^{\omega} \models \mathbf{GF}p \to \mathbf{FG}(q \vee r)$ since p does not occur infinitely often.
 - $\{q,r\}\emptyset\{p,q\}\emptyset\{r,s\}^{\omega} \models (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{X}\mathbf{X}s) \text{ since } q \land \neg \mathbf{X}\mathbf{X}s \text{ already holds}$ at the first position, i.e. q occurs at the first position and s does not occur at the

third position.

Solution 2.2

In the following table, σ and σ' are two example sequences such that $\sigma \models \varphi$ and $\sigma' \not\models \varphi$.

Solution 2.3

(a) $\mathbf{G}p \to \mathbf{F}p$ is a tautology since

$$\mathbf{G}p \to \mathbf{F}p \equiv \neg \mathbf{F} \neg p \to \mathbf{F}p$$

$$\equiv \mathbf{F} \neg p \lor \mathbf{F}p$$

$$\equiv \mathbf{F}(\neg p \lor p)$$

$$\equiv \mathbf{F}true$$

$$\equiv true.$$

(b) $\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$ is a tautology. For the sake of contradiction, suppose this is not the case. There exists σ such that

$$\sigma \models \mathbf{G}(p \to q), \text{ and}$$
 (1)

$$\sigma \not\models (\mathbf{G}p \to \mathbf{G}q). \tag{2}$$

By (2), we have

$$\sigma \models \mathbf{G}p$$
, and $\sigma \not\models \mathbf{G}q$.

Therefore, there exists $k \geq 0$ such that $p \in \sigma(k)$ and $q \notin \sigma(k)$ which contradicts (1).

(c) $\mathbf{FG}p \vee \mathbf{FG}\neg p$ is not a tautology since it is not satisfied by $(\{p\}\{q\})^{\omega}$.

- (d) $\neg \mathbf{F}p \to \mathbf{F} \neg \mathbf{F}p$ is a tautology since $\varphi \to \mathbf{F}\varphi$ is a tautology for every formula φ .
- (e) $\neg (p \mathbf{U} q) \leftrightarrow (\neg p \mathbf{U} \neg q)$ is not a tautology. Let $\sigma = \{p\}\{q\}^{\omega}$. We have $\sigma \not\models \neg (p \mathbf{U} q)$ and $\sigma \models \neg p \mathbf{U} \neg q$.
- (f) $(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \ \mathbf{U} \ (p \lor q))$ is not a tautology. Let $\sigma = \emptyset \{p,q\}^{\omega}$. We have $\sigma \models \mathbf{G}p \to \mathbf{F}q$ and $\sigma \not\models (p \ \mathbf{U} \ (p \lor q))$.