Model Checking - Exercise sheet 2

Exercise 2.1

Let $\varphi=\mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ and $\psi=(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ be LTL formulas over the atomic propositions $A P=\{p, q, r, s\}$. Say whether the following sequences satisfy φ and ψ. Justify your answers.
(a) \emptyset^{ω}
(f) $\{r\} \emptyset\{p, q, s\}^{\omega}$
(b) $\{p, q, r, s\}^{\omega}$
(g) $\{r\} \emptyset(\{p, q\}\{r, s\})^{\omega}$
(c) $\{p\}^{\omega}$
(h) $\{r\} \emptyset\{p\}\{q, r\}(\{p, s\} \emptyset)^{\omega}$
(d) $\{q\}^{\omega}$
(i) $\{r\} \emptyset\{p\}\{p, q, r\}(\{s\} \emptyset)^{\omega}$
(e) $\{p, q\}^{\omega}$
(j) $\{q, r\} \emptyset\{p, q\} \emptyset\{r, s\}^{\omega}$

Exercise 2.2

Let $A P=\{s, r, g\}$ be actions of a process: sending a message, receiving a message, and giving a result, respectively. Specify the following properties in LTL, and give example sequences that satisfy and violate the formulas.
(a) The process always gives a result.
(b) The process stops communicating after giving its result.
(c) The process sends infinitely many messages.
(d) The process only gives a result once.
(e) The process receives a message after it sends one.
(f) The process does nothing until it receives a message.

Exercise 2.3

Let $A P=\{p, q\}$. An LTL formula is a tautology if it is satisfied by all sequences over $2^{A P}$. Which of the following LTL formulas are tautologies? Justify each answer with a counterexample or a proof.
(a) $\mathbf{G} p \rightarrow \mathbf{F} p$
(d) $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$
(b) $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$
(e) $\neg(p \mathbf{U} q) \leftrightarrow(\neg p \mathbf{U} \neg q)$
(c) $\mathbf{F G} p \vee \mathbf{F G} \neg p$
(f) $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(p \vee q))$

Solution 2.1

(a) - $\emptyset^{\omega} \vDash \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since $\emptyset^{\omega} \not \models \mathbf{G F} p$ which follows from the fact that p does not occur infinitely often (or at all).

- $\emptyset^{\omega} \not \vDash(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since q never holds.
(b) - $\{p, q, r, s\}^{\omega} \models \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since p occurs infinitely often and q eventually always occur.
- $\{p, q, r, s\}^{\omega} \not \vDash(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since $\neg \mathbf{X X} s$ never holds.
(c) • $\{p\}^{\omega} \not \vDash \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since $\{p\}^{\omega} \vDash \mathbf{G F} p$ but $\{p\}^{\omega} \not \vDash \mathbf{F G}(q \vee r)$. The former follows from the fact that p occurs infinitely often, and the latter from the fact that q and r never occur.
- $\{p\}^{\omega} \not \vDash(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since q never occurs.
(d) - $\{q\}^{\omega} \models \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since $\{q\}^{\omega} \not \models \mathbf{G F} p$ which follows from the fact that p does not occur infinitely often (or at all).
- $\{q\}^{\omega} \models(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since $(q \wedge \neg \mathbf{X X} s)$ holds already at the first position of the sequence.
(e) - $\{p, q\}^{\omega} \models \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since p occurs infinitely often and q (eventually) always occur.
- $\{p, q\}^{\omega} \vDash(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since $(q \wedge \neg \mathbf{X X} s)$ holds already at the first position of the sequence.
(f) - $\{r\} \emptyset\{p, q, s\}^{\omega} \vDash \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since p occurs infinitely often and q eventually always occur.
- $\{r\} \emptyset\{p, q, s\}^{\omega} \not \vDash(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since $(q \wedge \neg \mathbf{X X} s)$ never holds.
(g) - $\{r\} \emptyset(\{p, q\}\{r, s\})^{\omega} \models \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since p occurs infinitely often, and from position 2 onwards it is always the case that either q or r holds.
- $\{r\} \emptyset(\{p, q\}\{r, s\})^{\omega} \models(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since the left-hand side of the topmost \mathbf{U} holds at the two first positions, and the right-hand side holds at the third position. In more details:
$-\{r\} \emptyset(\{p, q\}\{r, s\})^{\omega} \models r \mathbf{U} \mathbf{X} p$ since r holds at the first position and $\mathbf{X} p$ holds at the second position,
- $\emptyset(\{p, q\}\{r, s\})^{\omega} \models r \mathbf{U} \mathbf{X} p$ since $\mathbf{X} p$ holds at the first position,
- $(\{p, q\}\{r, s\})^{\omega} \models q \wedge \neg \mathbf{X X} s$ since q occurs at the first position and s does not occur at the third position.
(h) • $\{r\} \emptyset\{p\}\{q, r\}(\{p, s\} \emptyset)^{\omega} \not \vDash \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since p occurs infinitely often but neither q nor r eventually always occur.
- $\{r\} \emptyset\{p\}\{q, r\}(\{p, s\} \emptyset)^{\omega} \not \vDash(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since $q \wedge \neg \mathbf{X X} s$ only holds at the fourth position and $r \mathbf{U} \mathbf{X} p$ does not hold at the third position.
(i) • $\{r\} \emptyset\{p\}\{p, q, r\}(\{s\} \emptyset)^{\omega} \vDash \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since p does not occur infinitely often.
- $\{r\} \emptyset\{p\}\{p, q, r\}(\{s\} \emptyset)^{\omega} \models(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since the left-hand side of the topmost \mathbf{U} holds at the three first positions, and the right-hand side holds at the fourth position. In more details:
- $\{r\} \emptyset\{p\}\{p, q, r\}(\{s\} \emptyset)^{\omega} \models r \mathbf{U} \mathbf{X} p$ since r occurs at the first position and $\mathbf{X} p$ holds at the second position,
$-\emptyset\{p\}\{p, q, r\}(\{s\} \emptyset)^{\omega} \models r \mathbf{U} \mathbf{X} p$ since $\mathbf{X} p$ holds at the first position,
$-\{p\}\{p, q, r\}(\{s\} \emptyset)^{\omega} \models r \mathbf{U} \mathbf{X} p$ since $\mathbf{X} p$ holds at the first position,
$-\{p, q, r\}(\{s\} \emptyset)^{\omega} \models q \wedge \neg \mathbf{X X} s$ since q occurs at the first position and s does not occur at the third position.
(j) - $\{q, r\} \emptyset\{p, q\} \emptyset\{r, s\}^{\omega} \models \mathbf{G F} p \rightarrow \mathbf{F G}(q \vee r)$ since p does not occur infinitely often.
- $\{q, r\} \emptyset\{p, q\} \emptyset\{r, s\}^{\omega} \models(r \mathbf{U} \mathbf{X} p) \mathbf{U}(q \wedge \neg \mathbf{X X} s)$ since $q \wedge \neg \mathbf{X X} s$ already holds at the first position, i.e. q occurs at the first position and s does not occur at the
third position.

Solution 2.2

In the following table, σ and σ^{\prime} are two example sequences such that $\sigma \models \varphi$ and $\sigma^{\prime} \not \models \varphi$.

	φ	σ	σ^{\prime}
(a)	$\mathbf{F} g$	$\{g\} \emptyset^{\omega}$	\emptyset^{ω}
(b)	$\mathbf{G}(g \rightarrow \mathbf{G}(\neg s \wedge \neg r))$	$\{g\} \emptyset^{\omega}$	$\{g, s\} \emptyset^{\omega}$
	or if "after" is strict		
	$\mathbf{G}(g \rightarrow \mathbf{X G}(\neg s \wedge \neg r))$	$\{g\} \emptyset^{\omega}$	$\{g\}\{s\} \emptyset^{\omega}$
(c)	$\mathbf{G F} s$	$(\{s\}\{r\})^{\omega}$	$\{s\}\{s\}\{s\} \emptyset^{\omega}$
(d) $\mathbf{F} g \wedge \mathbf{G}(g \rightarrow \mathbf{X G} \neg g)$	$\{g\} \emptyset^{\omega}$	$\{g\}\{g\} \emptyset^{\omega}$	
(e)	$\mathbf{G}(s \rightarrow \mathbf{X F} r)$	$(\{s\}\{r\})^{\omega}$	$\{s\} \emptyset^{\omega}$
(f)	$(\neg s \wedge \neg g) \mathbf{W} r$	$\{r\}\{g\}^{\omega}$	$\{g\}^{\omega}$

Solution 2.3

(a) $\mathbf{G} p \rightarrow \mathbf{F} p$ is a tautology since

$$
\begin{aligned}
\mathbf{G} p \rightarrow \mathbf{F} p & \equiv \neg \mathbf{F} \neg p \rightarrow \mathbf{F} p \\
& \equiv \mathbf{F} \neg p \vee \mathbf{F} p \\
& \equiv \mathbf{F}(\neg p \vee p) \\
& \equiv \mathbf{F} \text { true } \\
& \equiv \text { true. }
\end{aligned}
$$

(b) $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$ is a tautology. For the sake of contradiction, suppose this is not the case. There exists σ such that

$$
\begin{align*}
& \sigma \models \mathbf{G}(p \rightarrow q), \text { and } \tag{1}\\
& \sigma \not \models(\mathbf{G} p \rightarrow \mathbf{G} q) . \tag{2}
\end{align*}
$$

By (2), we have

$$
\begin{aligned}
& \sigma \models \mathbf{G} p \text {, and } \\
& \sigma \not \models \mathbf{G} q .
\end{aligned}
$$

Therefore, there exists $k \geq 0$ such that $p \in \sigma(k)$ and $q \notin \sigma(k)$ which contradicts (11).
(c) $\mathrm{FG} p \vee \mathrm{FG} \neg p$ is not a tautology since it is not satisfied by $(\{p\}\{q\})^{\omega}$.
(d) $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$ is a tautology since $\varphi \rightarrow \mathbf{F} \varphi$ is a tautology for every formula φ.
(e) $\neg(p \mathbf{U} q) \leftrightarrow(\neg p \mathbf{U} \neg q)$ is not a tautology. Let $\sigma=\{p\}\{q\}^{\omega}$. We have $\sigma \not \vDash \neg(p \mathbf{U} q)$ and $\sigma \models \neg p \mathbf{U} \neg q$.
(f) $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(p \vee q))$ is not a tautology. Let $\sigma=\emptyset\{p, q\}^{\omega}$. We have $\sigma \models \mathbf{G} p \rightarrow$ $\mathbf{F} q$ and $\sigma \nLeftarrow(p \mathbf{U}(p \vee q))$.

