Model checking - Endterm

- You have 120 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points (plus 4 bonus points). You need 17 points to pass.

Question 1: LTL and Büchi automata $\quad(2+2+2+3=9$ points $)$
Consider the following LTL formulae over the set of atomic propositions $A P=\{p, q\}$:

$$
\phi_{1}=\mathbf{F G}(p \mathbf{U} q) \quad \phi_{2}=\mathbf{F G}(\neg p \rightarrow q) \quad \phi_{3}=\mathbf{G}(\neg p \vee(p \mathbf{R} q))
$$

(a) Is there a word satisfying ϕ_{1} but not ϕ_{2} ? If so, exhibit such a word and if not, briefly explain why it does not exist.
(b) Is there a word satisfying ϕ_{2} but not ϕ_{1} ? If so, exhibit such a word and if not, briefly explain why it does not exist.
(c) Is there a word satisfying all three formulae? If so, exhibit such a word and if not, briefly explain why it does not exist.
(d) Give a Büchi automaton accepting exactly the words satisfying ϕ_{1}. Make sure it accepts the following words: $\{p, q\}^{\omega},\{p\}\{q\}^{\omega}$ and rejects the following words: $\emptyset^{\omega},\{p\}^{\omega}$.

Question 2: CTL $\quad(1+1+1+1=4$ points)
Consider the CTL formulas $\mathbf{E F} p, \operatorname{EFAG} p, \mathbf{A G E F} p, \mathbf{A G A F} p, \mathbf{A G} p$ over $A P=\{p\}$. Draw:
(a) a Kripke structure \mathcal{K}_{1} satisfying $\mathbf{E F} p$ but not EFAG p;
(b) a Kripke structure \mathcal{K}_{2} satisfying EFAG p but not AGEF p;
(c) a Kripke structure \mathcal{K}_{3} satisfying AGEF p but not AGAF p;
(d) a Kripke structure \mathcal{K}_{4} satisfying AGAF p but not AG p.

Question 3: Partial order reduction $\quad(1+1+1+1+1=5$ points)

Consider the labelled Kripke structure $\mathcal{K}=(S, A, \rightarrow, r, A P, \nu)$ where $S=\left\{s_{0}, \ldots, s_{7}\right\}, A=\{a, b, c\}$ (A is the set of actions), $r=s_{0}, A P=\{p\}$, and \rightarrow and ν are graphically represented below. Observe that p holds only at state s_{6} and nowhere else.

(a) Give the largest relation $I \subseteq A \times A$ satisfying the three properties of an independence relation (irreflexivity, symmetry, and the "diamond property") and explain why it is the largest.
(b) Give the largest invisibility set $U \subseteq A$.
(c) Does $\operatorname{red}\left(s_{0}\right)=\{a\}$ satisfy condition C_{1} (see below) for I and U ? Justify your answer.
(d) Does $\operatorname{red}\left(s_{4}\right)=\{b\}$ satisfy all of $C_{0}-C_{3}$ (see below) for I and U ? Justify your answer.
(e) Does $\operatorname{red}\left(s_{2}\right)=\{a\}$ satisfy all of $C_{0}-C_{3}$ (see below) for I and U ? Justify your answer.

Recall that the conditions $C_{0}-C_{3}$ for $\operatorname{red}(s)$ are:

- $C_{0}: \operatorname{red}(s)=\emptyset$ iff $e n(s)=\emptyset$.
- C_{1} : Every path starting at s satisfies: no action dependent on some action in red (s) can be executed without an action from $\operatorname{red}(s)$ occurring first.
- C_{2} : If $\operatorname{red}(s) \neq e n(s)$, then all actions in $\operatorname{red}(s)$ are invisible.
- C_{3} : For all cycles in the reduced Kripke structure the following holds: if $a \in e n(s)$ for some state s in the cycle, then $a \in \operatorname{red}\left(s^{\prime}\right)$ for some (possibly other) state s^{\prime} in the cycle.

Question 4: Binary decision diagrams (4 points)

Assume that you are given a Kripke structure with states $S=\left\{s_{0}, s_{1}, \ldots, s_{7}\right\}$.
(a) Compute a multi-BDD representing the two subsets of states $P=\left\{s_{0}, s_{1}, s_{3}, s_{5}, s_{7}\right\}$ and $Q=\left\{s_{0}, s_{2}, s_{6}, s_{7}\right\}$. Encode each state of S using three bits in the obvious way:

$$
s_{0} \mapsto 000, s_{1} \mapsto 001, \ldots, s_{7} \mapsto 111
$$

Use the ordering $b_{0}<b_{1}<b_{2}$ where b_{0} is the most significant bit and b_{2} is the least significant bit of the binary encoding.
(b) 2 bonus points: Compute a BDD node for the set $P \cap Q$ using the BDD intersection algorithm (see below). Show the recursion tree.

Recall the BDD intersection algorithm. Let B and C be two nodes of a multi-BDD. The node for the intersection of B and C is computed as follows:

- If B and C are equal, then return B.
- If B or C are the 1 leaf, then return the other BDD.
- If B or C are the 0 leaf, then return 0 .
- Otherwise, compare the two variables labelling of B and C, and let x be the smaller among the two (or the one labelling both).
- If B is labelled by x, then let B_{1} and B_{0} be the children of B; otherwise, let $B_{1}:=B$ and $B_{0}:=B$. Define C_{1} and C_{0} analogously.
- Apply the strategy recursively to the pairs B_{1}, C_{1} and B_{0}, C_{0}, yielding BDD nodes E and F. If $E=F$, return E, otherwise return $m k(x, E, F)$.

Question 5: Abstraction refinement $\quad(2+1+2=5$ points)

Consider the Kripke structure $\mathcal{K}=(S, \rightarrow, r, A P, \nu)$ where $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\}, r=s_{0}, A P=\{p, q\}$, and \rightarrow and ν are graphically represented as follows:

Let \approx be the equivalence relation over S given by $s \approx t$ iff $\nu(s)=\nu(t)$.
(a) Construct the Kripke structure \mathcal{K}^{\prime} obtained by abstracting S with respect to \approx.
(b) Give a counterexample showing that \mathcal{K}^{\prime} does not satisfy $\mathbf{G F} p$.
(c) Following the procedure seen in class, use the counterexample to refine \mathcal{K}^{\prime} into a Kripke structure $\mathcal{K}^{\prime \prime}$.
(d) $\mathbf{2}$ bonus points: Keep refining the abstraction until you prove that \mathcal{K} satisfies GF p.

Question 6: Simulations and bisimulations $(2+2+2=6$ points $)$

Consider the two following Kripke structures \mathcal{K}_{1} (left) and \mathcal{K}_{2} (right) over $A P=\{p\}$. States coloured black satisfy proposition p and others do not.

(a) Does \mathcal{K}_{2} simulate \mathcal{K}_{1} ? If your answer is yes, then give a simulation relation, and if it is no, then explain why no simulation relation exists.
(b) Does \mathcal{K}_{1} simulate \mathcal{K}_{2} ? If your answer is yes, then give a simulation relation, and if it is no, then explain why no simulation relation exists.
(c) Define what is a bisimulation. Give a Kripke structure \mathcal{K}_{3} bisimilar to \mathcal{K}_{2} but with fewer states than \mathcal{K}_{2}.

Question 7: Pushdown systems (3+3+1=7 points)
Consider the following recursive program with a global boolean variable x :

```
boolean x;
procedure foo;
f0: x := not x;
b0: if x then
procedure bar;
        call foo;
f1: if x then
    endif;
        call foo;
    else
        call bar;
        endif;
f2: return;
```

(a) Model the program, where the value of x is not initialized, with a pushdown system $\mathcal{P}=(P, \Gamma, \Delta)$. Give explicit enumerations of the set of control states P, the stack alphabet Γ, and the set of rules Δ. Hint: Δ contains 10 rules.
(b) Let E be the set of all configurations of \mathcal{P} with empty stack. Give a \mathcal{P}-automaton recognizing the language E. Use the saturation rule to compute a \mathcal{P}-automaton recognizing the language pre ${ }^{*}(E)$. For each transition added by the saturation rule, briefly explain how it is generated.
Hint: The \mathcal{P}-automaton for $\operatorname{pre}^{*}(E)$ should have 10 transitions.
(c) Is there any configuration of $P \times \Gamma^{*}$ from which it is impossible to reach a configuration with empty stack? Briefly justify your answer.

Solution 1: LTL and Büchi automata $\quad(2+2+2+3=9$ points $)$

$$
\begin{array}{ll}
\phi_{1}=\mathbf{F G}(p \mathbf{U} q) & \\
\phi_{2}=\mathbf{F G}(\neg p \rightarrow q) & \\
\phi_{3} & =\mathbf{G}(\neg p \vee(p \mathbf{e} \text { eventually, } \emptyset \text { must stop occurring and } q \text { must appear infinitely often. } p \vee q . \\
\left.\phi_{3}\right) & \\
\text { - equivalent to } \mathbf{G}(\neg p \vee(p \wedge q)) .
\end{array}
$$

(a) No. We have $p \mathbf{U} q \Longrightarrow p \vee q$ and hence $\mathbf{F G}(p \mathbf{U} q) \Longrightarrow \mathbf{F G}(p \vee q) \equiv \mathbf{F G}(\neg p \rightarrow q)$.
(b) Yes. $\{p\}^{\omega}$ satisfies ϕ_{2} but not ϕ_{1}.
(c) Yes. $\{p, q\}^{\omega}$ satisfies all three.

- (a) is satisfied because $\mathbf{G}(p \wedge q) \Longrightarrow \mathbf{G}(p \mathbf{U} q)$;
- (b) is satisfied because $p \wedge q \Longrightarrow p \vee q$; and
- (c) is satisfied because $\phi_{3} \Longrightarrow \mathbf{G}(\neg p \vee(p \wedge q))$ and the word ensures $p \wedge q$ at all points.
(d) It should accept
- $\{p, q\}^{\omega}$
- $\emptyset\{p, q\}^{\omega}$
- $\{p\}\{q\}^{\omega}$
- $(\{p\}\{q\})^{\omega}$
- $\{q\}^{\omega}$
and it should reject
- \emptyset^{ω}
- $\{p\}^{\omega}$

Solution 2: CTL $\quad(1+1+1+1=4$ points)
(a) $\operatorname{EF} p$ but not EFAG p :

(b) EFAG p but not AGEF p :

(c) AGEF p but not AGAF p :

(d) AGAF p but not AGp:

Solution 3: Partial order reduction $\quad(1+1+1+1+1=5$ points)

(a) $I=\{(a, c),(c, a),(b, c),(c, b)\}$. Note that I cannot contain $\{(a, b),(b, a)\}$ since the diamond property is violated in s_{3}.
(b) $U=\{a\}$.
(c) No, C_{1} is violated because b can be executed before a.
(d) No, C_{2} is violated because b is visible.
(e) Yes:
(i) C_{0} is satisfied because $\operatorname{red}\left(s_{2}\right)$ is not empty.
(ii) C_{1} is satisfied because a is executed before b in all three paths starting in s_{2}.
(iii) C_{2} is satisfied because a is invisible.
(iv) C_{3} is satisfied because the only cycles of the reduced Kripke structure are the self-loops at s_{3} and s_{7}, and $\operatorname{red}\left(s_{3}\right)=e n\left(s_{3}\right)=\operatorname{red}\left(s_{7}\right)=e n\left(s_{7}\right)=\{b\}$ which follows from C_{0}.

Solution 4: Binary decision diagrams (4 points)

(a)

Resulting multi-BDD:

Solution 5: Abstraction refinement $(2+1+2=5$ points)
(a) First abstraction:

$$
\begin{aligned}
& a_{0}=\left\{s_{0}, s_{2}, s_{3}\right\} \\
& a_{1}=\left\{s_{1}, s_{4}\right\}
\end{aligned}
$$

(b) Counter-example: $a_{0}{ }^{\omega}$.
(c) We have $\left|a_{0}\right|=3$, so we unroll the loop 4 times:

Fails to concretize in 1 step, so we realize that we need to refine. The states which are reachable from the initial state should be distinguished from the states which still have successors. We introduce:

$$
\begin{aligned}
a_{00} & =\left\{s_{0}\right\}, \\
a_{01} & =\left\{s_{2}, s_{3}\right\}, \\
a_{1} & =\left\{s_{1}, s_{4}\right\} .
\end{aligned}
$$

(d) New counter-example: $a_{00} a_{1} a_{01} a_{01}{ }^{\omega}$:

We split s_{2} and s_{3}, and introduce:

$$
\begin{aligned}
a_{010} & =\left\{s_{2}\right\}, \\
a_{011} & =\left\{s_{3}\right\} .
\end{aligned}
$$

We obtain the following which satisfies GFp:

Solution 6: Simulations and bisimulations $(2+2+2=6$ points $)$
(a) Yes: $\{(a, x),(b, v),(c, v),(d, w)\}$.
(b) No, we prove it by contradiction. Assume that \mathcal{K}_{1} simulates \mathcal{K}_{2} and let H be the simulation. Since x and a are the respective initial states, $(x, a) \in H$. Since $(x, a) \in H$ and $x \rightarrow u$ where u is black, there must exist a black state in \mathcal{K}_{1} with a transition from a. The only candidate in this case is d. Hence, $(u, d) \in H$. By a similar argument, if $(u, d) \in H$ and $u \rightarrow v$ where v is white, then there must exist a white state in \mathcal{K}_{1} with a transition from d - which is not the case. Hence \mathcal{K}_{1} does not simulate \mathcal{K}_{2}.
(c) A relation H is called a bisimulation between \mathcal{K} and \mathcal{K}^{\prime} iff H is a simulation from \mathcal{K} to \mathcal{K}^{\prime} and $\{(t, s)$: $(s, t) \in H\}$ is a simulation from \mathcal{K}^{\prime} to \mathcal{K}.

We merge x and u in \mathcal{K}_{2} to obtain \mathcal{K}_{3} which is as follows:

We define the bisimulation relation as follows:

$$
H=\left\{\left(x, u^{\prime}\right),\left(u, u^{\prime}\right),\left(v, v^{\prime}\right),\left(w, w^{\prime}\right)\right\}
$$

Solution 7: Pushdown systems $\quad(3+3+1=7$ points)
(a) The stack alphabet is $\Gamma=\left\{f_{0}, f_{1}, f_{2}, b_{0}, b_{1}\right\}$ and the pushdown system is as follows:

(b)

(c) No, there is no such configuration since the \mathcal{P}-automaton obtained in (b) accepts $P \times \Gamma^{*}$.

