Model checking — Endterm

- You have 120 minutes to complete the exam.
- Answers must be written in a **separate booklet**. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable **pen**. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points (plus 4 bonus points). You need 17 points to pass.

Question 1: LTL and Büchi automata (2+2+2+3=9 points)

Consider the following LTL formulae over the set of atomic propositions $AP = \{p, q\}$:

$$\phi_1 = \mathbf{FG}(p \mathbf{U} q)$$
 $\phi_2 = \mathbf{FG}(\neg p \to q)$ $\phi_3 = \mathbf{G}(\neg p \lor (p \mathbf{R} q))$

- (a) Is there a word satisfying ϕ_1 but not ϕ_2 ? If so, exhibit such a word and if not, briefly explain why it does not exist.
- (b) Is there a word satisfying ϕ_2 but not ϕ_1 ? If so, exhibit such a word and if not, briefly explain why it does not exist
- (c) Is there a word satisfying all three formulae? If so, exhibit such a word and if not, briefly explain why it does not exist.
- (d) Give a Büchi automaton accepting exactly the words satisfying ϕ_1 . Make sure it accepts the following words: $\{p,q\}^{\omega}$, $\{p\}\{q\}^{\omega}$ and rejects the following words: \emptyset^{ω} , $\{p\}^{\omega}$.

Question 2: CTL (1+1+1+1=4 points)

Consider the CTL formulas $\mathbf{EF}p$, $\mathbf{EFAG}p$, $\mathbf{AGEF}p$, $\mathbf{AGAF}p$, $\mathbf{AG}p$ over $AP = \{p\}$. Draw:

- (a) a Kripke structure K_1 satisfying $\mathbf{EF}p$ but not $\mathbf{EFAG}p$;
- (b) a Kripke structure \mathcal{K}_2 satisfying **EFAG**p but not **AGEF**p;
- (c) a Kripke structure \mathcal{K}_3 satisfying **AGEF**p but not **AGAF**p;
- (d) a Kripke structure \mathcal{K}_4 satisfying $\mathbf{AGAF}p$ but not $\mathbf{AG}p$.

Question 3: Partial order reduction (1+1+1+1+1=5 points)

Consider the labelled Kripke structure $\mathcal{K} = (S, A, \to, r, AP, \nu)$ where $S = \{s_0, \dots, s_7\}$, $A = \{a, b, c\}$ (A is the set of actions), $r = s_0$, $AP = \{p\}$, and \to and ν are graphically represented below. Observe that p holds only at state s_6 and nowhere else.

- (a) Give the largest relation $I \subseteq A \times A$ satisfying the three properties of an independence relation (irreflexivity, symmetry, and the "diamond property") and explain why it is the largest.
- (b) Give the largest invisibility set $U \subseteq A$.
- (c) Does $red(s_0) = \{a\}$ satisfy condition C_1 (see below) for I and U? Justify your answer.
- (d) Does $red(s_4) = \{b\}$ satisfy all of C_0 — C_3 (see below) for I and U? Justify your answer.
- (e) Does $red(s_2) = \{a\}$ satisfy all of $C_0 C_3$ (see below) for I and U? Justify your answer.

Recall that the conditions C_0 – C_3 for red(s) are:

- C_0 : $red(s) = \emptyset$ iff $en(s) = \emptyset$.
- C_1 : Every path starting at s satisfies: no action dependent on some action in red(s) can be executed without an action from red(s) occurring first.
- C_2 : If $red(s) \neq en(s)$, then all actions in red(s) are invisible.
- C_3 : For all cycles in the reduced Kripke structure the following holds: if $a \in en(s)$ for some state s in the cycle, then $a \in red(s')$ for some (possibly other) state s' in the cycle.

Question 4: Binary decision diagrams (4 points)

Assume that you are given a Kripke structure with states $S = \{s_0, s_1, \dots, s_7\}$.

(a) Compute a multi-BDD representing the two subsets of states $P = \{s_0, s_1, s_3, s_5, s_7\}$ and $Q = \{s_0, s_2, s_6, s_7\}$. Encode each state of S using three bits in the obvious way:

$$s_0 \mapsto 000, s_1 \mapsto 001, \dots, s_7 \mapsto 111.$$

Use the ordering $b_0 < b_1 < b_2$ where b_0 is the most significant bit and b_2 is the least significant bit of the binary encoding.

(b) **2 bonus points:** Compute a BDD node for the set $P \cap Q$ using the BDD intersection algorithm (see below). Show the recursion tree.

Recall the BDD intersection algorithm. Let B and C be two nodes of a multi-BDD. The node for the intersection of B and C is computed as follows:

- If B and C are equal, then return B.
- If B or C are the 1 leaf, then return the other BDD.
- If B or C are the 0 leaf, then return 0.
- Otherwise, compare the two variables labelling of B and C, and let x be the smaller among the two (or the one labelling both).
- If B is labelled by x, then let B_1 and B_0 be the children of B; otherwise, let $B_1 := B$ and $B_0 := B$. Define C_1 and C_0 analogously.
- Apply the strategy recursively to the pairs B_1 , C_1 and B_0 , C_0 , yielding BDD nodes E and F. If E = F, return E, otherwise return mk(x, E, F).

Question 5: Abstraction refinement (2+1+2=5 points)

Consider the Kripke structure $\mathcal{K} = (S, \to, r, AP, \nu)$ where $S = \{s_0, s_1, s_2, s_3, s_4\}, r = s_0, AP = \{p, q\}, \text{ and } \to \text{ and } \nu \text{ are graphically represented as follows:}$

Let \approx be the equivalence relation over S given by $s \approx t$ iff $\nu(s) = \nu(t)$.

- (a) Construct the Kripke structure \mathcal{K}' obtained by abstracting S with respect to \approx .
- (b) Give a counterexample showing that \mathcal{K}' does not satisfy $\mathbf{GF}p$.
- (c) Following the procedure seen in class, use the counterexample to refine \mathcal{K}' into a Kripke structure \mathcal{K}'' .
- (d) **2 bonus points**: Keep refining the abstraction until you prove that K satisfies GFp.

Question 6: Simulations and bisimulations (2+2+2=6 points)

Consider the two following Kripke structures \mathcal{K}_1 (left) and \mathcal{K}_2 (right) over $AP = \{p\}$. States coloured black satisfy proposition p and others do not.

- (a) Does \mathcal{K}_2 simulate \mathcal{K}_1 ? If your answer is *yes*, then give a simulation relation, and if it is *no*, then explain why no simulation relation exists.
- (b) Does \mathcal{K}_1 simulate \mathcal{K}_2 ? If your answer is *yes*, then give a simulation relation, and if it is *no*, then explain why no simulation relation exists.
- (c) Define what is a bisimulation. Give a Kripke structure \mathcal{K}_3 bisimilar to \mathcal{K}_2 but with fewer states than \mathcal{K}_2 .

Question 7: Pushdown systems (3+3+1=7 points)

Consider the following recursive program with a global boolean variable x:

boolean x;

```
procedure foo;
                                    procedure bar;
f0:
        x := not x;
                              b0:
                                      if x then
                                        call foo;
        if x then
f1:
                                      endif;
          call foo;
        else
                              b1:
                                      return;
          call bar;
        endif;
f2:
        return;
```

- (a) Model the program, where the value of x is not initialized, with a pushdown system $\mathcal{P} = (P, \Gamma, \Delta)$. Give explicit enumerations of the set of control states P, the stack alphabet Γ , and the set of rules Δ . Hint: Δ contains 10 rules.
- (b) Let E be the set of all configurations of \mathcal{P} with empty stack. Give a \mathcal{P} -automaton recognizing the language E. Use the saturation rule to compute a \mathcal{P} -automaton recognizing the language $pre^*(E)$. For each transition added by the saturation rule, briefly explain how it is generated. Hint: The \mathcal{P} -automaton for $pre^*(E)$ should have 10 transitions.
- (c) Is there any configuration of $P \times \Gamma^*$ from which it is impossible to reach a configuration with empty stack? Briefly justify your answer.

Solution 1: LTL and Büchi automata (2+2+2+3=9 points)

 $\begin{array}{ll} \phi_1 = \mathbf{FG}(p \ \mathbf{U} \ q) & \text{— eventually, } \emptyset \text{ must stop occurring and } q \text{ must appear infinitely often.} \\ \phi_2 = \mathbf{FG}(\neg p \to q) & \text{— eventually always } p \lor q. \\ \phi_3 = \mathbf{G}(\neg p \lor (p \ \mathbf{R} \ q)) & \text{— equivalent to } \mathbf{G}(\neg p \lor (p \land q)). \end{array}$

- (a) No. We have $p \mathbf{U} q \implies p \vee q$ and hence $\mathbf{FG}(p \mathbf{U} q) \implies \mathbf{FG}(p \vee q) \equiv \mathbf{FG}(\neg p \to q)$.
- (b) Yes. $\{p\}^{\omega}$ satisfies ϕ_2 but not ϕ_1 .
- (c) Yes. $\{p,q\}^{\omega}$ satisfies all three.
 - (a) is satisfied because $\mathbf{G}(p \wedge q) \implies \mathbf{G}(p \mathbf{U} q)$;
 - (b) is satisfied because $p \land q \implies p \lor q$; and
 - (c) is satisfied because $\phi_3 \implies \mathbf{G}(\neg p \lor (p \land q))$ and the word ensures $p \land q$ at all points.
- (d) It should accept
 - $\{p,q\}^{\omega}$
 - $\bullet \ \emptyset \{p,q\}^\omega$
 - $\{p\}\{q\}^{\omega}$
 - $(\{p\}\{q\})^{\omega}$
 - $\{q\}^{\omega}$

and it should reject

- \bullet \emptyset^{ω}
- $\{p\}^{\omega}$

Solution 2: CTL (1+1+1+1=4 points)

(a) $\mathbf{EF}p$ but not $\mathbf{EFAG}p$:

(b) **EFAG**p but not **AGEF**p:

(c) $\mathbf{AGEF}p$ but not $\mathbf{AGAF}p$:

(d) $\mathbf{AGAF}p$ but not $\mathbf{AG}p$:

Solution 3: Partial order reduction (1+1+1+1+1=5 points)

- (a) $I = \{(a, c), (c, a), (b, c), (c, b)\}$. Note that I cannot contain $\{(a, b), (b, a)\}$ since the diamond property is violated in s_3 .
- (b) $U = \{a\}.$
- (c) No, C_1 is violated because b can be executed before a.
- (d) No, C_2 is violated because b is visible.
- (e) Yes:
 - (i) C_0 is satisfied because $red(s_2)$ is not empty.
 - (ii) C_1 is satisfied because a is executed before b in all three paths starting in s_2 .
 - (iii) C_2 is satisfied because a is invisible.
 - (iv) C_3 is satisfied because the only cycles of the reduced Kripke structure are the self-loops at s_3 and s_7 , and $red(s_3) = en(s_3) = red(s_7) = en(s_7) = \{b\}$ which follows from C_0 .

Solution 4: Binary decision diagrams (4 points)

(a)

(b) Recursion tree:

Resulting multi-BDD:

Solution 5: Abstraction refinement (2+1+2=5 points)

(a) First abstraction:

(b) Counter-example: a_0^{ω} .

(c) We have $|a_0| = 3$, so we unroll the loop 4 times:

Fails to concretize in 1 step, so we realize that we need to refine. The states which are reachable from the initial state should be distinguished from the states which still have successors. We introduce:

$$a_{00} = \{s_0\},$$

$$a_{01} = \{s_2, s_3\},$$

$$a_1 = \{s_1, s_4\}.$$

(d) New counter-example: $a_{00}a_1a_{01}a_{01}^{\omega}$:

We split s_2 and s_3 , and introduce:

$$a_{010} = \{s_2\},\$$

 $a_{011} = \{s_3\}.$

Solution 6: Simulations and bisimulations (2+2+2=6) points

- (a) Yes: $\{(a, x), (b, v), (c, v), (d, w)\}.$
- (b) No, we prove it by contradiction. Assume that \mathcal{K}_1 simulates \mathcal{K}_2 and let H be the simulation. Since x and a are the respective initial states, $(x,a) \in H$. Since $(x,a) \in H$ and $x \to u$ where u is black, there must exist a black state in \mathcal{K}_1 with a transition from a. The only candidate in this case is d. Hence, $(u,d) \in H$. By a similar argument, if $(u,d) \in H$ and $u \to v$ where v is white, then there must exist a white state in \mathcal{K}_1 with a transition from d—which is not the case. Hence \mathcal{K}_1 does not simulate \mathcal{K}_2 .
- (c) A relation H is called a bisimulation between K and K' iff H is a simulation from K to K' and $\{(t,s):(s,t)\in H\}$ is a simulation from K' to K.

We merge x and u in \mathcal{K}_2 to obtain \mathcal{K}_3 which is as follows:

We define the bisimulation relation as follows:

$$H = \{(x, u'), (u, u'), (v, v'), (w, w')\}.$$

Solution 7: Pushdown systems (3+3+1=7 points)

(a) The stack alphabet is $\Gamma = \{f_0, f_1, f_2, b_0, b_1\}$ and the pushdown system is as follows:

(c) No, there is no such configuration since the \mathcal{P} -automaton obtained in (b) accepts $P \times \Gamma^*$.