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Model checking — Endterm

• You have 120 minutes to complete the exam.

• Answers must be written in a separate booklet. Do not answer on the exam.

• Please let us know if you need more paper.

• Write your name and Matrikelnummer on every sheet.

• Write with a non-erasable pen. Do not use red or green.

• You are not allowed to use auxiliary means other than pen and paper.

• You can obtain 40 points (plus 4 bonus points). You need 17 points to pass.

Question 1: LTL and Büchi automata (2 + 2 + 2 + 3 = 9 points)

Consider the following LTL formulae over the set of atomic propositions AP = {p, q}:

φ1 = FG(p U q) φ2 = FG(¬p→ q) φ3 = G(¬p ∨ (p R q))

(a) Is there a word satisfying φ1 but not φ2? If so, exhibit such a word and if not, briefly explain why it does
not exist.

(b) Is there a word satisfying φ2 but not φ1? If so, exhibit such a word and if not, briefly explain why it does
not exist.

(c) Is there a word satisfying all three formulae? If so, exhibit such a word and if not, briefly explain why it
does not exist.

(d) Give a Büchi automaton accepting exactly the words satisfying φ1. Make sure it accepts the following
words: {p, q}ω, {p}{q}ω and rejects the following words: ∅ω, {p}ω.

Question 2: CTL (1 + 1 + 1 + 1 = 4 points)

Consider the CTL formulas EFp,EFAGp,AGEFp,AGAFp,AGp over AP = {p}. Draw:

(a) a Kripke structure K1 satisfying EFp but not EFAGp;

(b) a Kripke structure K2 satisfying EFAGp but not AGEFp;

(c) a Kripke structure K3 satisfying AGEFp but not AGAFp;

(d) a Kripke structure K4 satisfying AGAFp but not AGp.
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Question 3: Partial order reduction (1 + 1 + 1 + 1 + 1 = 5 points)

Consider the labelled Kripke structure K = (S,A,−→, r, AP, ν) where S = {s0, . . . , s7}, A = {a, b, c} (A is the
set of actions), r = s0, AP = {p}, and −→ and ν are graphically represented below. Observe that p holds only
at state s6 and nowhere else.
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(a) Give the largest relation I ⊆ A×A satisfying the three properties of an independence relation (irreflexivity,
symmetry, and the “diamond property”) and explain why it is the largest.

(b) Give the largest invisibility set U ⊆ A.

(c) Does red(s0) = {a} satisfy condition C1 (see below) for I and U? Justify your answer.

(d) Does red(s4) = {b} satisfy all of C0–C3 (see below) for I and U? Justify your answer.

(e) Does red(s2) = {a} satisfy all of C0–C3 (see below) for I and U? Justify your answer.

Recall that the conditions C0–C3 for red(s) are:

• C0: red(s) = ∅ iff en(s) = ∅.

• C1: Every path starting at s satisfies: no action dependent on some action in red(s) can be executed
without an action from red(s) occurring first.

• C2: If red(s) 6= en(s), then all actions in red(s) are invisible.

• C3: For all cycles in the reduced Kripke structure the following holds: if a ∈ en(s) for some state s in the
cycle, then a ∈ red(s′) for some (possibly other) state s′ in the cycle.
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Question 4: Binary decision diagrams (4 points)

Assume that you are given a Kripke structure with states S = {s0, s1, . . . , s7}.

(a) Compute a multi-BDD representing the two subsets of states P = {s0, s1, s3, s5, s7} andQ = {s0, s2, s6, s7}.
Encode each state of S using three bits in the obvious way:

s0 7→ 000, s1 7→ 001, . . . , s7 7→ 111.

Use the ordering b0 < b1 < b2 where b0 is the most significant bit and b2 is the least significant bit of the
binary encoding.

(b) 2 bonus points: Compute a BDD node for the set P ∩ Q using the BDD intersection algorithm (see
below). Show the recursion tree.

Recall the BDD intersection algorithm. Let B and C be two nodes of a multi-BDD. The node for the
intersection of B and C is computed as follows:

• If B and C are equal, then return B.

• If B or C are the 1 leaf, then return the other BDD.

• If B or C are the 0 leaf, then return 0.

• Otherwise, compare the two variables labelling of B and C, and let x be the smaller among the two
(or the one labelling both).

• If B is labelled by x, then let B1 and B0 be the children of B; otherwise, let B1 := B and B0 := B.
Define C1 and C0 analogously.

• Apply the strategy recursively to the pairs B1, C1 and B0, C0, yielding BDD nodes E and F . If
E = F , return E, otherwise return mk(x,E, F ).

Question 5: Abstraction refinement (2 + 1 + 2 = 5 points)

Consider the Kripke structure K = (S,−→, r, AP, ν) where S = {s0, s1, s2, s3, s4}, r = s0, AP = {p, q}, and −→
and ν are graphically represented as follows:
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Let ≈ be the equivalence relation over S given by s ≈ t iff ν(s) = ν(t).

(a) Construct the Kripke structure K′ obtained by abstracting S with respect to ≈.

(b) Give a counterexample showing that K′ does not satisfy GFp.

(c) Following the procedure seen in class, use the counterexample to refine K′ into a Kripke structure K′′.

(d) 2 bonus points: Keep refining the abstraction until you prove that K satisfies GFp.
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Question 6: Simulations and bisimulations (2 + 2+ 2 = 6 points)

Consider the two following Kripke structures K1 (left) and K2 (right) over AP = {p}. States coloured black
satisfy proposition p and others do not.
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(a) Does K2 simulate K1? If your answer is yes, then give a simulation relation, and if it is no, then explain
why no simulation relation exists.

(b) Does K1 simulate K2? If your answer is yes, then give a simulation relation, and if it is no, then explain
why no simulation relation exists.

(c) Define what is a bisimulation. Give a Kripke structure K3 bisimilar to K2 but with fewer states than K2.

Question 7: Pushdown systems (3 + 3 + 1 = 7 points)

Consider the following recursive program with a global boolean variable x:

boolean x;

procedure foo; procedure bar;

f0: x := not x; b0: if x then

call foo;

f1: if x then endif;

call foo;

else b1: return;

call bar;

endif;

f2: return;

(a) Model the program, where the value of x is not initialized, with a pushdown system P = (P,Γ,∆). Give
explicit enumerations of the set of control states P , the stack alphabet Γ, and the set of rules ∆.

Hint : ∆ contains 10 rules.

(b) Let E be the set of all configurations of P with empty stack. Give a P-automaton recognizing the
language E. Use the saturation rule to compute a P-automaton recognizing the language pre∗(E). For
each transition added by the saturation rule, briefly explain how it is generated.

Hint : The P-automaton for pre∗(E) should have 10 transitions.

(c) Is there any configuration of P ×Γ∗ from which it is impossible to reach a configuration with empty stack?
Briefly justify your answer.
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