Model checking — Endterm

- You have **120 minutes** to complete the exam.
- Answers must be written in a **separate booklet**. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable **pen**. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points (plus 4 bonus points). You need 17 points to pass.

Question 1: LTL and Büchi automata (2+2+2+3=9 points)

Consider the following LTL formulae over the set of atomic propositions $AP = \{p, q\}$:

$$\phi_1 = \mathbf{FG}(p \mathbf{U} q) \qquad \phi_2 = \mathbf{FG}(\neg p \to q) \qquad \phi_3 = \mathbf{G}(\neg p \lor (p \mathbf{R} q))$$

- (a) Is there a word satisfying ϕ_1 but not ϕ_2 ? If so, exhibit such a word and if not, briefly explain why it does not exist.
- (b) Is there a word satisfying ϕ_2 but not ϕ_1 ? If so, exhibit such a word and if not, briefly explain why it does not exist.
- (c) Is there a word satisfying all three formulae? If so, exhibit such a word and if not, briefly explain why it does not exist.
- (d) Give a Büchi automaton accepting exactly the words satisfying ϕ_1 . Make sure it accepts the following words: $\{p,q\}^{\omega}, \{p\}\{q\}^{\omega}$ and rejects the following words: $\emptyset^{\omega}, \{p\}^{\omega}$.

Question 2: CTL (1+1+1+1=4 points)

Consider the CTL formulas $\mathbf{EF}p$, $\mathbf{EFAG}p$, $\mathbf{AGEF}p$, $\mathbf{AGAF}p$, $\mathbf{AG}p$ over $AP = \{p\}$. Draw:

- (a) a Kripke structure \mathcal{K}_1 satisfying **EF***p* but not **EFAG***p*;
- (b) a Kripke structure \mathcal{K}_2 satisfying **EFAG***p* but not **AGEF***p*;
- (c) a Kripke structure \mathcal{K}_3 satisfying **AGEF***p* but not **AGAF***p*;
- (d) a Kripke structure \mathcal{K}_4 satisfying **AGAF***p* but not **AG***p*.

Question 3: Partial order reduction (1+1+1+1+1=5 points)

Consider the labelled Kripke structure $\mathcal{K} = (S, A, \rightarrow, r, AP, \nu)$ where $S = \{s_0, \ldots, s_7\}$, $A = \{a, b, c\}$ (A is the set of actions), $r = s_0$, $AP = \{p\}$, and \rightarrow and ν are graphically represented below. Observe that p holds only at state s_6 and nowhere else.

- (a) Give the largest relation $I \subseteq A \times A$ satisfying the three properties of an independence relation (irreflexivity, symmetry, and the "diamond property") and explain why it is the largest.
- (b) Give the largest invisibility set $U \subseteq A$.
- (c) Does $red(s_0) = \{a\}$ satisfy condition C_1 (see below) for I and U? Justify your answer.
- (d) Does $red(s_4) = \{b\}$ satisfy all of $C_0 C_3$ (see below) for I and U? Justify your answer.
- (e) Does $red(s_2) = \{a\}$ satisfy all of $C_0 C_3$ (see below) for I and U? Justify your answer.

Recall that the conditions C_0-C_3 for red(s) are:

- C_0 : $red(s) = \emptyset$ iff $en(s) = \emptyset$.
- C_1 : Every path starting at s satisfies: no action dependent on some action in red(s) can be executed without an action from red(s) occurring first.
- C_2 : If $red(s) \neq en(s)$, then all actions in red(s) are invisible.
- C_3 : For all cycles in the reduced Kripke structure the following holds: if $a \in en(s)$ for some state s in the cycle, then $a \in red(s')$ for some (possibly other) state s' in the cycle.

Question 4: Binary decision diagrams (4 points)

Assume that you are given a Kripke structure with states $S = \{s_0, s_1, \ldots, s_7\}$.

(a) Compute a multi-BDD representing the two subsets of states $P = \{s_0, s_1, s_3, s_5, s_7\}$ and $Q = \{s_0, s_2, s_6, s_7\}$. Encode each state of S using three bits in the obvious way:

$$s_0 \mapsto 000, s_1 \mapsto 001, \ldots, s_7 \mapsto 111.$$

Use the ordering $b_0 < b_1 < b_2$ where b_0 is the most significant bit and b_2 is the least significant bit of the binary encoding.

(b) **2 bonus points:** Compute a BDD node for the set $P \cap Q$ using the BDD intersection algorithm (see below). Show the recursion tree.

Recall the BDD intersection algorithm. Let B and C be two nodes of a multi-BDD. The node for the intersection of B and C is computed as follows:

- If B and C are equal, then return B.
- If B or C are the 1 leaf, then return the other BDD.
- If B or C are the 0 leaf, then return 0.
- Otherwise, compare the two variables labelling of B and C, and let x be the smaller among the two (or the one labelling both).
- If B is labelled by x, then let B_1 and B_0 be the children of B; otherwise, let $B_1 := B$ and $B_0 := B$. Define C_1 and C_0 analogously.
- Apply the strategy recursively to the pairs B_1 , C_1 and B_0 , C_0 , yielding BDD nodes E and F. If E = F, return E, otherwise return mk(x, E, F).

Question 5: Abstraction refinement (2+1+2=5 points)

Consider the Kripke structure $\mathcal{K} = (S, \rightarrow, r, AP, \nu)$ where $S = \{s_0, s_1, s_2, s_3, s_4\}$, $r = s_0$, $AP = \{p, q\}$, and \rightarrow and ν are graphically represented as follows:

Let \approx be the equivalence relation over S given by $s \approx t$ iff $\nu(s) = \nu(t)$.

- (a) Construct the Kripke structure \mathcal{K}' obtained by abstracting S with respect to \approx .
- (b) Give a counterexample showing that \mathcal{K}' does not satisfy **GF***p*.
- (c) Following the procedure seen in class, use the counterexample to refine \mathcal{K}' into a Kripke structure \mathcal{K}'' .
- (d) **2 bonus points**: Keep refining the abstraction until you prove that \mathcal{K} satisfies **GF***p*.

Question 6: Simulations and bisimulations (2+2+2=6 points)

Consider the two following Kripke structures \mathcal{K}_1 (left) and \mathcal{K}_2 (right) over $AP = \{p\}$. States coloured black satisfy proposition p and others do not.

- (a) Does \mathcal{K}_2 simulate \mathcal{K}_1 ? If your answer is *yes*, then give a simulation relation, and if it is *no*, then explain why no simulation relation exists.
- (b) Does \mathcal{K}_1 simulate \mathcal{K}_2 ? If your answer is *yes*, then give a simulation relation, and if it is *no*, then explain why no simulation relation exists.
- (c) Define what is a bisimulation. Give a Kripke structure \mathcal{K}_3 bisimilar to \mathcal{K}_2 but with fewer states than \mathcal{K}_2 .

Question 7: Pushdown systems (3+3+1=7 points)

Consider the following recursive program with a global boolean variable x:

boolean x; procedure foo; procedure bar; f0: b0: x := not x;if x then call foo; f1: if x then endif; call foo; else b1: return; call bar; endif; f2: return;

- (a) Model the program, where the value of x is not initialized, with a pushdown system P = (P, Γ, Δ). Give explicit enumerations of the set of control states P, the stack alphabet Γ, and the set of rules Δ. Hint: Δ contains 10 rules.
- (b) Let E be the set of all configurations of P with empty stack. Give a P-automaton recognizing the language E. Use the saturation rule to compute a P-automaton recognizing the language pre*(E). For each transition added by the saturation rule, briefly explain how it is generated. Hint: The P-automaton for pre*(E) should have 10 transitions.
- (c) Is there any configuration of $P \times \Gamma^*$ from which it is impossible to reach a configuration with empty stack? Briefly justify your answer.