
Technische Universität München (I7)
J. Esparza / M. Blondin / P. Ashok

Summer Semester 2018
28.06.2018

Model Checking – Exercise sheet 10

Exercise 10.1

Create a NuSMV model for the following Kripke structure over AP = {p, q}:

{p}
s0

{p, q}
s1

{p}
s2

∅
s3

Use NuSMV to model check each of the following formulas. Explain in word if the formula
holds, or give a counterexample otherwise.

(a) EG p,

(b) AX AF EG p,

(c) p AU q,

(d) AG(p→ AX p),

(e) EX(¬q ∧ (¬p EU q)).

Exercise 10.2

Model the following stack system in NuSMV:

The stack system consists of three input interfaces: push, pop, in val; and one
output interface: out val. The values of push and pop can be either true or
false, while in val and out val can take any number between 0 and 9.

When push is true, the system takes the input from in val and pushes it
onto its internal stack. When pop is true, the system removes the value on
the top of the stack and outputs it via out val. It is forbidden to call push
and pop at the same time. The size of the stack is 5, i.e. the stack is full if
there are 5 pushes without a pop. When the stack is full, it ignores push and
in val. Similarly, the system ignores pop when the stack is empty. The value
of out val is undefined if the stack is empty or pop is false.

1

Write the following properties in CTL and use NuSMV to model check the formulas:

(a) The stack cannot be empty and full at the same time.

(b) There exists a path along which the stack is eventually always full.

(c) From any given point of time, there always exists a path in which the stack will be
full.

(d) The stack cannot be empty after a push.

(e) The internal stack is correctly updated after a push or pop.

(f) Whenever the stack is full, there exists a path in which the stack stays full forever or
it remains full until a pop.

(g) For every push, there exists a path that pops the value without pushing another value.

(h) After every pop, out val holds the correct value.

Exercise 10.3

Let K = (S,−→, r, AP, ν) be a Kripke structure. For every X ⊆ S, i ∈ N and CTL formulas
ϕ and ψ, let

ξ0ϕ,ψ(X) = X,

ξi+1
ϕ,ψ (X) = JψK ∪

(
JϕK ∩ pre(ξiϕ,ψ(X))

)
.

(a) Show that if JϕK ⊆ Jϕ′K, JψK ⊆ Jψ′K and X ⊆ X ′, then ξiϕ,ψ(X) ⊆ ξiϕ′,ψ′(X ′) for every
i ∈ N.

(b) Show that if (ϕ ⇒ ϕ′) ∧ (ψ ⇒ ψ′), then (ϕ EU ψ) ⇒ (ϕ′ EU ψ′), EFϕ ⇒ EFϕ′ and
AGϕ⇒ AGϕ′.

2

Solution 10.1

MODULE main

VAR

state : {s0, s1, s2, s3};

ASSIGN

init(state) := s0;

next(state) :=

case

state = s0 : {s1, s2};

state = s1 : s3;

state = s2 : {s0, s1, s2};

state = s3 : s2;

esac;

DEFINE

p := state = s0 | state = s1 | state = s2;

q := state = s1;

SPEC

EG p

SPEC

AX AF EG p

SPEC

A [p U q]

SPEC

AG (p -> AX p)

SPEC

EX (!q & E [!p U q])

Solution 10.2

MODULE main

VAR

op : 0..2;

in_val : 0..9;

out_val : 0..9;

ptr : 0..5;

arr : array 0..4 of 0..9;

FROZENVAR

i : 0..4;

x : 0..9;

DEFINE

empty := (ptr = 0);

full := (ptr = 5);

push := (op = 0);

3

pop := (op = 1);

ASSIGN

init(ptr) := 0;

next(ptr) := case

push & !full : ptr + 1;

pop & !empty : ptr - 1;

TRUE : ptr;

esac;

next(arr[0]) := push & ptr = 0 ? in_val : arr[0];

next(arr[1]) := push & ptr = 1 ? in_val : arr[1];

next(arr[2]) := push & ptr = 2 ? in_val : arr[2];

next(arr[3]) := push & ptr = 3 ? in_val : arr[3];

next(arr[4]) := push & ptr = 4 ? in_val : arr[4];

next(out_val) := case

pop & !empty : arr[ptr - 1];

TRUE : out_val;

esac;

-- (a) The stack cannot be empty and full at the same time.

SPEC

AG !(empty & full)

-- (b) There exists a path along which the stack is eventually always full.

SPEC

EF EG full

-- (c) From any given point of time, there always exists a path in

-- which the stack will be full.

SPEC

AG EF full

-- (d) The stack cannot be empty after a push.

SPEC

AG (push -> AX !empty)

-- (e) The internal stack is correctly updated after a push or a pop.

SPEC

AG ((push & !full & in_val = x & ptr = i) -> (AX (arr[i] = x)))

SPEC

AG ((push & !full & ptr = i) -> (AX (ptr = i + 1)))

4

SPEC

AG ((pop & !empty & ptr = i) -> (AX (ptr = i - 1)))

SPEC

AG ((push & ptr >= 4) -> (AX full))

SPEC

AG ((pop & ptr <= 1) -> (AX empty))

-- (f) Whenever the stack is full, there exists a path in which the

-- stack stays full forever or it remains full until a pop.

SPEC

AG (full -> ((EG full) | E[full U pop]))

-- (g) For every push, there exists a path that pops the value without

-- pushing another value.

SPEC

AG (push -> EX E[!push U pop])

-- (h) After every pop, out_val holds the correct value

SPEC

AG ((pop & !empty & arr[ptr - 1] = x) -> (AX (out_val = x)))

Solution 10.3

(a) We prove the claim by induction on i. The validity of the base case follows from
ξ0ϕ,ψ(X) = X ⊆ X ′ = ξ0ϕ′,ψ′(X ′). Assume the claim holds for i > 0. Let x ∈ ξi+1

ϕ,ψ (X).
By definition of ξ, we have

x ∈ JψK ∪
(
JϕK ∩ pre(ξiϕ,ψ(X))

)
.

If x ∈ JψK, then x ∈ Jψ′K and hence x ∈ ξi+1
ϕ′,ψ′(X ′) in which case we are done. Thus,

assume x ∈ JϕK∩pre(ξiϕ,ψ(X)). There exists y ∈ ξiϕ,ψ(X) such that x −→ y. By induction
hypothesis, ξiϕ,ψ(X) ⊆ ξiϕ′,ψ′(X ′). Thus, y ∈ ξiϕ′,ψ′(X ′) and hence x ∈ pre(ξiϕ′,ψ′(X ′)).

Moreover, x ∈ JϕK ⊆ Jϕ′K. Therefore, x ∈ ξi+1
ϕ′,ψ′(X ′).

(b) If (ϕ ⇒ ϕ′) ∧ (ψ ⇒ ψ′), then JϕK ⊆ Jϕ′K and JψK ⊆ JψK. As seen in class, there exist
i, j ∈ N such that

Jϕ EU ψK = ξ`ϕ,ψ(∅) for every ` ≥ i,

Jϕ′ EU ψ′K = ξ`ϕ′,ψ′(∅) for every ` ≥ j.

5

Let k = max(i, j). We have:

Jϕ EU ψK = ξkϕ,ψ(∅)

⊆ ξkϕ′,ψ′(∅) (by (a))

= Jϕ′ EU ψ′K.

This means that (ϕ EU ψ) ⇒ (ϕ′ EU ψ′). By taking ϕ = ϕ′ = true, it also follows
that EFϕ⇒ EFϕ′.

It remains to show that AGϕ⇒ AGϕ′ holds. We have

(AGϕ⇒ AGϕ′) ≡ (¬AGϕ ∨AGϕ′)

≡ (¬¬EF¬ϕ ∨ ¬EF¬ϕ′)

≡ (EF¬ϕ ∨ ¬EF¬ϕ′)

≡ (EF¬ϕ′ ⇒ EF¬ϕ).

Now, observe that J¬ϕ′K = Jϕ′K ⊆ JϕK = J¬ϕK since JϕK ⊆ Jϕ′K. Thus, EF¬ϕ′ ⇒
EF¬ϕ holds which completes the proof.

6

