Model Checking - Exercise sheet 10

Exercise 10.1

Create a NuSMV model for the following Kripke structure over $A P=\{p, q\}$:

Use NuSMV to model check each of the following formulas. Explain in word if the formula holds, or give a counterexample otherwise.
(a) EG p,
(b) AX AF EG p,
(c) $p \mathbf{A U} q$,
(d) $\mathbf{A G}(p \rightarrow \mathbf{A X} p)$,
(e) $\mathbf{E X}(\neg q \wedge(\neg p \mathbf{E U} q))$.

Exercise 10.2

Model the following stack system in NuSMV:
The stack system consists of three input interfaces: push, pop, in_val; and one output interface: out_val. The values of push and pop can be either true or false, while in_val and out_val can take any number between 0 and 9 .

When push is true, the system takes the input from in_val and pushes it onto its internal stack. When pop is true, the system removes the value on the top of the stack and outputs it via out_val. It is forbidden to call push and pop at the same time. The size of the stack is 5 , i.e. the stack is full if there are 5 pushes without a pop. When the stack is full, it ignores push and in_val. Similarly, the system ignores pop when the stack is empty. The value of out_val is undefined if the stack is empty or pop is false.

Write the following properties in CTL and use NuSMV to model check the formulas:
(a) The stack cannot be empty and full at the same time.
(b) There exists a path along which the stack is eventually always full.
(c) From any given point of time, there always exists a path in which the stack will be full.
(d) The stack cannot be empty after a push.
(e) The internal stack is correctly updated after a push or pop.
(f) Whenever the stack is full, there exists a path in which the stack stays full forever or it remains full until a pop.
(g) For every push, there exists a path that pops the value without pushing another value.
(h) After every pop, out_val holds the correct value.

Exercise 10.3

Let $\mathcal{K}=(S, \rightarrow, r, A P, \nu)$ be a Kripke structure. For every $X \subseteq S, i \in \mathbb{N}$ and CTL formulas φ and ψ, let

$$
\begin{aligned}
& \xi_{\varphi, \psi}^{0}(X)=X \\
& \xi_{\varphi, \psi}^{i+1}(X)=\llbracket \psi \rrbracket \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{pre}\left(\xi_{\varphi, \psi}^{i}(X)\right)\right) .
\end{aligned}
$$

(a) Show that if $\llbracket \varphi \rrbracket \subseteq \llbracket \varphi^{\prime} \rrbracket, \llbracket \psi \rrbracket \subseteq \llbracket \psi^{\prime} \rrbracket$ and $X \subseteq X^{\prime}$, then $\xi_{\varphi, \psi}^{i}(X) \subseteq \xi_{\varphi^{\prime}, \psi^{\prime}}^{i}\left(X^{\prime}\right)$ for every $i \in \mathbb{N}$.
(b) Show that if $\left(\varphi \Rightarrow \varphi^{\prime}\right) \wedge\left(\psi \Rightarrow \psi^{\prime}\right)$, then $(\varphi \mathbf{E U} \psi) \Rightarrow\left(\varphi^{\prime} \mathbf{E U} \psi^{\prime}\right), \mathbf{E F} \varphi \Rightarrow \mathbf{E F} \varphi^{\prime}$ and $\mathbf{A G} \varphi \Rightarrow \mathbf{A G} \varphi^{\prime}$.

Solution 10.1

MODULE main

VAR

state : \{s0, s1, s2, s3\};
ASSIGN
init(state) := s0;
next(state) :=
case
state = s0 : \{s1, s2\};
state = s1 : s3;
state = s2 : \{s0, s1, s2\};
state = s3 : s2;
esac;
DEFINE
$\mathrm{p}:=$ state $=$ s0 | state $=$ s1 | state = s2;
$\mathrm{q}:=$ state $=\mathrm{s} 1$;
SPEC
EG p
SPEC
AX AF EG p
SPEC
A [p U q]
SPEC
AG ($\mathrm{p} \rightarrow \mathrm{AX} \mathrm{p}$)
SPEC
EX (!q \& E [!p U q])

Solution 10.2

MODULE main

VAR
op : 0..2;
in_val : 0..9;
out_val : 0..9;
ptr : 0..5;
arr : array 0..4 of 0..9;
FROZENVAR
i : 0..4;
x : 0..9;
DEFINE
empty := (ptr = 0);
full := (ptr = 5);
push := (op = 0);

```
    pop := (op = 1);
ASSIGN
    init(ptr) := 0;
    next(ptr) := case
                push & !full : ptr + 1;
                pop & !empty : ptr - 1;
                TRUE : ptr;
            esac;
    next(arr[0]) := push & ptr = 0 ? in_val : arr[0];
    next(arr[1]) := push & ptr = 1 ? in_val : arr[1];
    next(arr[2]) := push & ptr = 2 ? in_val : arr[2];
    next(arr[3]) := push & ptr = 3 ? in_val : arr[3];
    next(arr[4]) := push & ptr = 4 ? in_val : arr[4];
    next(out_val) := case
                            pop & !empty : arr[ptr - 1];
                            TRUE : out_val;
                esac;
```

-- (a) The stack cannot be empty and full at the same time.
SPEC
AG ! (empty \& full)
-- (b) There exists a path along which the stack is eventually always full. SPEC

EF EG full
-- (c) From any given point of time, there always exists a path in
-- which the stack will be full.
SPEC
AG EF full
-- (d) The stack cannot be empty after a push.
SPEC
AG (push -> AX !empty)
-- (e) The internal stack is correctly updated after a push or a pop. SPEC

AG ((push \& !full \& in_val = x \& ptr = i) $->(\operatorname{AX}(\operatorname{arr}[i]=x)))$

SPEC
AG ((push \& !full \& ptr = i) $->(\operatorname{AX}(p t r=i+1)))$

```
SPEC
    AG ((pop & !empty & ptr = i) -> (AX (ptr = i - 1)))
SPEC
    AG ((push & ptr >= 4) -> (AX full))
SPEC
    AG ((pop & ptr <= 1) -> (AX empty))
-- (f) Whenever the stack is full, there exists a path in which the
-- stack stays full forever or it remains full until a pop.
SPEC
    AG (full -> ((EG full) | E[full U pop]))
-- (g) For every push, there exists a path that pops the value without
-- pushing another value.
SPEC
    AG (push -> EX E[!push U pop])
-- (h) After every pop, out_val holds the correct value
SPEC
    AG ((pop & !empty & arr[ptr - 1] = x) -> (AX (out_val = x)))
```


Solution 10.3

(a) We prove the claim by induction on i. The validity of the base case follows from $\xi_{\varphi, \psi}^{0}(X)=X \subseteq X^{\prime}=\xi_{\varphi^{\prime}, \psi^{\prime}}^{0}\left(X^{\prime}\right)$. Assume the claim holds for $i>0$. Let $x \in \xi_{\varphi, \psi}^{i+1}(X)$. By definition of ξ, we have

$$
x \in \llbracket \psi \rrbracket \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{pre}\left(\xi_{\varphi, \psi}^{i}(X)\right)\right) .
$$

If $x \in \llbracket \psi \rrbracket$, then $x \in \llbracket \psi^{\prime} \rrbracket$ and hence $x \in \xi_{\varphi^{\prime}, \psi^{\prime}}^{i+1}\left(X^{\prime}\right)$ in which case we are done. Thus, assume $x \in \llbracket \varphi \rrbracket \cap \operatorname{pre}\left(\xi_{\varphi, \psi}^{i}(X)\right)$. There exists $y \in \xi_{\varphi, \psi}^{i}(X)$ such that $x \rightarrow y$. By induction hypothesis, $\xi_{\varphi, \psi}^{i}(X) \subseteq \xi_{\varphi^{\prime}, \psi^{\prime}}^{i}\left(X^{\prime}\right)$. Thus, $y \in \xi_{\varphi^{\prime}, \psi^{\prime}}^{i}\left(X^{\prime}\right)$ and hence $x \in \operatorname{pre}\left(\xi_{\varphi^{\prime}, \psi^{\prime}}^{i}\left(X^{\prime}\right)\right)$. Moreover, $x \in \llbracket \varphi \rrbracket \subseteq \llbracket \varphi^{\prime} \rrbracket$. Therefore, $x \in \xi_{\varphi^{\prime}, \psi^{\prime}}^{i+1}\left(X^{\prime}\right)$.
(b) If $\left(\varphi \Rightarrow \varphi^{\prime}\right) \wedge\left(\psi \Rightarrow \psi^{\prime}\right)$, then $\llbracket \varphi \rrbracket \subseteq \llbracket \varphi^{\prime} \rrbracket$ and $\llbracket \psi \rrbracket \subseteq \llbracket \psi \rrbracket$. As seen in class, there exist $i, j \in \mathbb{N}$ such that

$$
\begin{aligned}
\llbracket \varphi \mathbf{E U} \psi \rrbracket & =\xi_{\varphi, \psi}^{\ell}(\emptyset) & & \text { for every } \ell \geq i, \\
\llbracket \varphi^{\prime} \mathbf{E U} \psi^{\prime} \rrbracket & =\xi_{\varphi^{\prime}, \psi^{\prime}}^{\ell}(\emptyset) & & \text { for every } \ell \geq j .
\end{aligned}
$$

Let $k=\max (i, j)$. We have:

$$
\begin{aligned}
\llbracket \varphi \mathbf{E U} \psi \rrbracket & =\xi_{\varphi, \psi}^{k}(\emptyset) \\
& \subseteq \xi_{\varphi^{\prime}, \psi^{\prime}}^{k}(\emptyset) \\
& =\llbracket \varphi^{\prime} \mathbf{E} \mathbf{U} \psi^{\prime} \rrbracket .
\end{aligned}
$$

This means that $(\varphi \mathbf{E U} \psi) \Rightarrow\left(\varphi^{\prime} \mathbf{E U} \psi^{\prime}\right)$. By taking $\varphi=\varphi^{\prime}=$ true, it also follows that $\mathbf{E F} \varphi \Rightarrow \mathbf{E F} \varphi^{\prime}$.
It remains to show that $\mathbf{A G} \varphi \Rightarrow \mathbf{A G} \varphi^{\prime}$ holds. We have

$$
\begin{aligned}
\left(\mathbf{A G} \varphi \Rightarrow \mathbf{A G} \varphi^{\prime}\right) & \equiv\left(\neg \mathbf{A G} \varphi \vee \mathbf{A G} \varphi^{\prime}\right) \\
& \equiv\left(\neg \neg \mathbf{E F} \neg \varphi \vee \neg \mathbf{E F} \neg \varphi^{\prime}\right) \\
& \equiv\left(\mathbf{E F} \neg \varphi \vee \neg \mathbf{E F} \neg \varphi^{\prime}\right) \\
& \equiv\left(\mathbf{E F} \neg \varphi^{\prime} \Rightarrow \mathbf{E F} \neg \varphi\right) .
\end{aligned}
$$

 $\mathrm{EF} \neg \varphi$ holds which completes the proof.

