Model Checking - Exercise sheet 8

Exercise 8.1

Given two CTL formulas ϕ_{1} and ϕ_{2}, we write $\phi_{1} \Rightarrow \phi_{2}$ iff for every Kripke structure \mathcal{K} we have $\left(\mathcal{K} \models \phi_{1}\right) \Rightarrow\left(\mathcal{K} \models \phi_{2}\right)$. Furthermore, we define an implication graph as a directed graph whose nodes are CTL formulas, and that contains an edge from ϕ_{1} to ϕ_{2} iff $\phi_{1} \Rightarrow \phi_{2}$. Let $A P=\{p\}$.
(a) Draw an implication graph with the nodes: EFEF p, EGEG p, AFAF p, AGAG p.
(b) For each implication $\phi_{1} \Rightarrow \phi_{2}$ obtained in (a), give a Kripke structure \mathcal{K} that satisfies ϕ_{2} but not ϕ_{1}, i.e. give a \mathcal{K} such that $\mathcal{K} \models \phi_{2}$ and $\mathcal{K} \not \models \phi_{1}$.
(c) Add the following CTL formulas to the implication graph obtained in (a): AFEF p, EFAF p, AGEG p, EGAG p.
(d) Complete the graph obtained in (c) with the nodes: AGAF p, AFAG p, AGEF p, EGAF p, AFEG p, EFAG p, EFEG p, EGEF p.

Exercise 8.2

Consider the following Kripke structure over $A P=\{p, q\}$:

(a) Compute $\llbracket \mathbf{E G} q \rrbracket$ and $\llbracket \mathbf{E F} q \rrbracket$.
(b) Compute $\llbracket \mathbf{A G A F} p \rrbracket$ and $\llbracket \mathbf{E F A G} \neg q \rrbracket$.

Solution 8.1

Note that the " \Rightarrow " relation is transitive, hence all transitive edges in (a), (b) and (d) are omitted.
(a)

(b) The following Kripke structure satisfies EGp, but not AGp:

The following Kripke structure satisfies AFp, but not EGp:

The following Kripke structure satisfies $\mathbf{E F} p$, but not AFp:

(c)

(d)

Solution 8.2

Let $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$.
(a) - We compute the largest fixed point from the sequence

$$
\pi^{0}(S), \pi^{1}(S), \pi^{2}(S), \ldots
$$

where $\pi^{0}(S)=S$ and $\pi^{i+1}(S)=\llbracket q \rrbracket \cap \operatorname{pre}\left(\pi^{i}(S)\right)$. We obtain

$$
\begin{aligned}
& \pi^{0}(S)=S \\
& \pi^{1}(S)=\left\{s_{0}, s_{4}, s_{5}, s_{7}\right\}, \\
& \pi^{2}(S)=\left\{s_{0}, s_{4}, s_{5}, s_{7}\right\} .
\end{aligned}
$$

Therefore, $\llbracket \mathbf{E G} q \rrbracket=\left\{s_{0}, s_{4}, s_{5}, s_{7}\right\}$.

- We compute the smallest fixed point from the sequence

$$
\xi^{0}(\emptyset), \xi^{1}(\emptyset), \xi^{2}(\emptyset), \ldots
$$

where $\xi^{0}(\emptyset)=\emptyset$ and $\xi^{i+1}(\emptyset)=\llbracket q \rrbracket \cup \operatorname{pre}\left(\xi^{i}(\emptyset)\right)$. We obtain

$$
\begin{aligned}
\xi^{0}(\emptyset) & =\emptyset, \\
\xi^{1}(\emptyset) & =\left\{s_{0}, s_{4}, s_{5}, s_{7}\right\}, \\
\xi^{2}(\emptyset) & =\left\{s_{0}, s_{4}, s_{5}, s_{6}, s_{7}\right\}, \\
\xi^{3}(\emptyset) & =\left\{s_{0}, s_{4}, s_{5}, s_{6}, s_{7}\right\} .
\end{aligned}
$$

Therefore, $\llbracket \mathbf{E F} q \rrbracket=\left\{s_{0}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$.
(b) - Note that AGAF $p \equiv \neg \mathbf{E F E G} \neg p$. Let us first compute $\llbracket \mathbf{E G} \neg p \rrbracket$ by computing the largest fixed point from the sequence $\pi^{0}(S), \pi^{1}(S), \pi^{2}(S), \ldots$. We obtain

$$
\begin{aligned}
& \pi^{0}(S)=S, \\
& \pi^{1}(S)=\left\{s_{0}, s_{2}, s_{5}, s_{7}\right\}, \\
& \pi^{2}(S)=\left\{s_{7}\right\}, \\
& \pi^{3}(S)=\left\{s_{7}\right\} .
\end{aligned}
$$

Therefore, $\llbracket \mathbf{E G} \neg p \rrbracket=\left\{s_{7}\right\}$. In general, $\llbracket \mathbf{E F} \varphi \rrbracket$ is the set of states that can reach some state of $\llbracket \varphi \rrbracket$. By setting $\varphi=\mathbf{E G} \neg p$, we obtain

$$
\begin{aligned}
\llbracket \mathbf{A G A F} p \rrbracket & =\llbracket \neg \mathbf{E F E G} \neg p \rrbracket \\
& =\overline{\llbracket \mathbf{E F E G} \neg p \rrbracket} \\
& =\overline{\left\{s_{0}, s_{6}, s_{7}\right\}} \\
& =\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\} .
\end{aligned}
$$

- Note that $\mathbf{E F A G} \neg q \equiv \mathbf{E F} \neg \mathbf{E F} q$. By (a), $\llbracket \mathbf{E F} q \rrbracket=\left\{s_{0}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$, and hence $\llbracket \neg \mathbf{E F} q \rrbracket=\overline{\llbracket \mathbf{E F} q \rrbracket}=\left\{s_{1}, s_{2}, s_{3}\right\}$. In general, $\llbracket \mathbf{E F} \varphi \rrbracket$ is the set of states that can reach some state of $\llbracket \varphi \rrbracket$. By setting $\varphi=\neg \mathbf{E F} q$, we obtain

$$
\llbracket \mathbf{E F A G} \neg q \rrbracket=\llbracket \mathbf{E F} \neg \mathbf{E F} q \rrbracket=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\} .
$$

