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Model Checking – Exercise sheet 8

Exercise 8.1

Given two CTL formulas φ1 and φ2, we write φ1 ⇒ φ2 iff for every Kripke structure K we
have (K |= φ1) ⇒ (K |= φ2). Furthermore, we define an implication graph as a directed
graph whose nodes are CTL formulas, and that contains an edge from φ1 to φ2 iff φ1 ⇒ φ2.
Let AP = {p}.
(a) Draw an implication graph with the nodes: EFEFp, EGEGp, AFAFp, AGAGp.

(b) For each implication φ1 ⇒ φ2 obtained in (a), give a Kripke structure K that satisfies
φ2 but not φ1, i.e. give a K such that K |= φ2 and K 6|= φ1.

(c) Add the following CTL formulas to the implication graph obtained in (a): AFEFp,
EFAFp, AGEGp, EGAGp.

(d) Complete the graph obtained in (c) with the nodes: AGAFp, AFAGp, AGEFp,
EGAFp, AFEGp, EFAGp, EFEGp, EGEFp.

Exercise 8.2

Consider the following Kripke structure over AP = {p, q}:

{q}

s0

{p, q}

s4

{q}

s5

{p}

s1

∅

s2

{p}

s3

{p}

s6

{q}

s7

(a) Compute JEGqK and JEFqK.

(b) Compute JAGAFpK and JEFAG¬qK.
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Solution 8.1

Note that the “⇒” relation is transitive, hence all transitive edges in (a), (b) and (d) are
omitted.

(a)

AGp ≡ AGAGp

EGp ≡ EGEGp

AFp ≡ AFAFp

EFp ≡ EFEFp

(b) The following Kripke structure satisfies EGp, but not AGp:

{p} ∅

The following Kripke structure satisfies AFp, but not EGp:

{p} ∅

The following Kripke structure satisfies EFp, but not AFp:

∅ {p}
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(c)

AGp ≡ AGAGp ≡ AGEGp ≡ EGAGp

EGp ≡ EGEGp

AFp ≡ AFAFp

EFp ≡ EFEFp ≡ AFEFp ≡ EFAFp

(d)

AGp ≡ AGAGp ≡ AGEGp ≡ EGAGp

EGp ≡ EGEGp AFAGp

AFEGp AGAFp EFAGp

EGAFp AGEFp EFEGp

AFp ≡ AFAFp EGEFp

EFp ≡ EFEFp ≡ AFEFp ≡ EFAFp
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Solution 8.2

Let S = {s0, s1, s2, s3, s4, s5, s6, s7}.

(a) • We compute the largest fixed point from the sequence

π0(S), π1(S), π2(S), . . .

where π0(S) = S and πi+1(S) = JqK ∩ pre(πi(S)). We obtain

π0(S) = S,

π1(S) = {s0, s4, s5, s7},
π2(S) = {s0, s4, s5, s7}.

Therefore, JEGqK = {s0, s4, s5, s7}.

• We compute the smallest fixed point from the sequence

ξ0(∅), ξ1(∅), ξ2(∅), . . .

where ξ0(∅) = ∅ and ξi+1(∅) = JqK ∪ pre(ξi(∅)). We obtain

ξ0(∅) = ∅,
ξ1(∅) = {s0, s4, s5, s7},
ξ2(∅) = {s0, s4, s5, s6, s7},
ξ3(∅) = {s0, s4, s5, s6, s7}.

Therefore, JEFqK = {s0, s4, s5, s6, s7}.

(b) • Note that AGAFp ≡ ¬EFEG¬p. Let us first compute JEG¬pK by computing
the largest fixed point from the sequence π0(S), π1(S), π2(S), . . .. We obtain

π0(S) = S,

π1(S) = {s0, s2, s5, s7},
π2(S) = {s7},
π3(S) = {s7}.

Therefore, JEG¬pK = {s7}. In general, JEFϕK is the set of states that can reach
some state of JϕK. By setting ϕ = EG¬p, we obtain

JAGAFpK = J¬EFEG¬pK
= JEFEG¬pK
= {s0, s6, s7}
= {s1, s2, s3, s4, s5}.
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• Note that EFAG¬q ≡ EF¬EFq. By (a), JEFqK = {s0, s4, s5, s6, s7}, and hence
J¬EFqK = JEFqK = {s1, s2, s3}. In general, JEFϕK is the set of states that can
reach some state of JϕK. By setting ϕ = ¬EFq, we obtain

JEFAG¬qK = JEF¬EFqK = {s0, s1, s2, s3, s4, s5}.
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