Model Checking – Exercise sheet 8

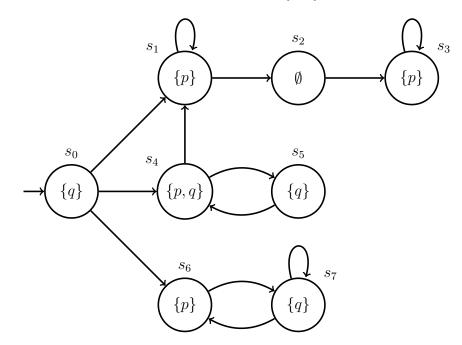
Exercise 8.1

Given two CTL formulas ϕ_1 and ϕ_2 , we write $\phi_1 \Rightarrow \phi_2$ iff for every Kripke structure \mathcal{K} we have $(\mathcal{K} \models \phi_1) \Rightarrow (\mathcal{K} \models \phi_2)$. Furthermore, we define an *implication graph* as a directed graph whose nodes are CTL formulas, and that contains an edge from ϕ_1 to ϕ_2 iff $\phi_1 \Rightarrow \phi_2$. Let $AP = \{p\}$.

- (a) Draw an implication graph with the nodes: EFEFp, EGEGp, AFAFp, AGAGp.
- (b) For each implication $\phi_1 \Rightarrow \phi_2$ obtained in (a), give a Kripke structure \mathcal{K} that satisfies ϕ_2 but not ϕ_1 , i.e. give a \mathcal{K} such that $\mathcal{K} \models \phi_2$ and $\mathcal{K} \not\models \phi_1$.
- (c) Add the following CTL formulas to the implication graph obtained in (a): $\mathbf{AFEF}p$, $\mathbf{EFAF}p$, $\mathbf{AGEG}p$, $\mathbf{EGAG}p$.
- (d) Complete the graph obtained in (c) with the nodes: AGAFp, AFAGp, AGEFp, EGAFp, AFEGp, EFAGp, EFEGp, EGEFp.

Exercise 8.2

Consider the following Kripke structure over $AP = \{p, q\}$:



- (a) Compute $\llbracket \mathbf{E}\mathbf{G}q \rrbracket$ and $\llbracket \mathbf{E}\mathbf{F}q \rrbracket$.
- (b) Compute $\llbracket \mathbf{A}\mathbf{G}\mathbf{A}\mathbf{F}p \rrbracket$ and $\llbracket \mathbf{E}\mathbf{F}\mathbf{A}\mathbf{G}\neg q \rrbracket$.