Model Checking – Sample Solution 6

Exercise 6.1

(i) $\mathcal{T} = (S, \to, r)$, where $S = \{i_0, w_0, cs_0\} \times \{i_1, w_1, cs_1\} \times \{t, f\}$ for modeling three locations in m and two possible values of s.

- (ii) $\phi_a = \neg \mathbf{F}(cs_0 \wedge cs_1)$, where $AP_a = \{cs_0, cs_1\}$ and $\phi_b = \mathbf{G}(w_0 \rightarrow \mathbf{F} cs_0)$, where $AP_b = \{w_0, cs_0\}$
- (iii) $\neg \phi_a = \mathbf{F}(cs_1 \wedge cs_2)$. So, $\mathcal{B}_{\neg \phi_a}$ can be constructed as follows:

 $\neg \phi_b = \mathbf{F}(w_0 \wedge \mathbf{G} \neg cs_0)$. So, $\mathcal{B}_{\neg \phi_b}$ can be constructed as follows:

(iv) Let rename the states to $S = \{s_0, \ldots, s_7\}.$

$$\mathcal{K}_{a} = (S, \to, r, AP_{a}, \nu_{a}), \text{ where } \nu_{a}(s) = \begin{cases}
\{cs_{0}\}, & \text{if } s \in \{s_{3}, s_{6}\} \\
\{cs_{1}\}, & \text{if } s \in \{s_{5}, s_{7}\} \\
\emptyset, & \text{otherwise}
\end{cases}$$

$$\mathcal{K}_{b} = (S, \to, r, AP_{b}, \nu_{b}), \text{ where } \nu_{b}(s) = \begin{cases}
\{w_{0}\}, & \text{if } s \in \{s_{1}, s_{4}, s_{7}\} \\
\{cs_{0}\}, & \text{if } s \in \{s_{3}, s_{6}\} \\
\emptyset, & \text{otherwise}
\end{cases}$$

The Büchi automaton $\mathcal{B}_{\mathcal{K}_a} = (2^{AP_a}, S, r, \Delta_{K_a}, S)$, where $\Delta_{K_a} = \{(s, \nu_a(s), t) \mid s \to t\}$:

The Büchi automaton $\mathcal{B}_{\mathcal{K}_b} = (2^{AP_b}, S, r, \Delta_{K_b}, S)$, where $\Delta_{K_b} = \{(s, \nu_b(s), t) \mid s \to t\}$:

(v)
$$\mathcal{B}_a = (2^{AP_a}, S \times \{q_0, q_1\}, (s_0, q_0), \Delta_a, S \times \{q_1\})$$

$$\mathcal{B}_b = (2^{AP_b}, S \times \{q_0, q_1\}, (s_0, q_0), \Delta_b, S \times \{q_1\})$$

(vi) For \mathcal{B}_a , the algorithm terminates without reporting a counterexample. By the time the algorithm terminates, it finds out that every state forms an SCC, but without an accepting state.

For \mathcal{B}_b , assuming that the algorithm always searches the automaton above top-to-bottom and left-to-right, then it first finds the SCC $\{(s_0, q_0), (s_1, q_0), (s_3, q_0)\}$ when it reaches (s_3, q_0) . Later, it finds the SCC $\{(s_6, q_0), (s_2, q_0), (s_4, q_0)\}$ when it reaches (s_4, q_0) . Finally, it reaches (s_4, q_1) and finds out that its successor (s_7, q_1) is still active. Since (s_4, q_1) is an accepting state, the algorithm stops. Notice that the last SCC it discovers is $\{(s_7, q_1), (s_1, q_1), (s_4, q_1)\}$ with (s_7, q_1) as the root.

The counterexample run in \mathcal{B}_b found by the algorithm is

$$(s_0, q_0), (s_1, q_0), (s_3, q_0), (s_6, q_0), (s_2, q_0), (s_4, q_0), ((s_7, q_1), (s_1, q_1), (s_4, q_1))^{\omega}$$

The corresponding path in \mathcal{K}_b can be obtained by projecting the run on the first component. The counterexample valuation sequence is as follows:

$$\{\}\{w_0\}\{cs_0\}\{cs_0\}\{\}\{w_0\}\{w_0\}\{w_0\}\{w_0\}\}^{\omega}$$

(vii) Check the formulas: !<>(m[0]@cs && m[1]@cs) and [](m@wait -> (<> m@cs))