Summer Semester 2018 03.05.2018

Model Checking – Exercise sheet 4

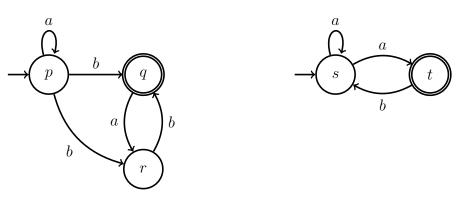
Exercise 4.1

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give Büchi automata recognizing the ω -languages over Σ defined by the following LTL formulas:

- (a) $\mathbf{X}\mathbf{G}\neg p$
- (b) $(\mathbf{GF}p) \to (\mathbf{F}q)$
- (c) $p \land \neg(\mathbf{XF}p)$
- (d) $\mathbf{G}(p \mathbf{U} (p \to q))$
- (e) $\mathbf{F}q \to (\neg q \mathbf{U} (\neg q \land p))$

Exercise 4.2

Let A and B be the following Büchi automata over $\Sigma = \{a, b\}$. Construct a Büchi automaton C such that $\mathcal{L}(C) = \mathcal{L}(A) \cap \mathcal{L}(B)$. Moreover, say whether there exists a deterministic Büchi automaton recognizing $\mathcal{L}(C)$. Justify your answer.



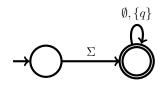
Exercise 4.3 Let $AP = \{p, q, r\}$ and $\Sigma = 2^{AP}$. For every $\sigma \in \Sigma^{\omega}$, let

$$P_{\sigma} = \{i \in \mathbb{N} : p \in \sigma(i)\},\$$
$$Q_{\sigma} = \{i \in \mathbb{N} : q \in \sigma(i)\}.$$

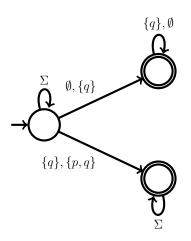
We say that a sequence $\sigma \in \Sigma^{\omega}$ is good if there exists an injective function $f: P_{\sigma} \to Q_{\sigma}$ such that $i \leq f(i)$ for every $i \in P_{\sigma}$. Let $L = \{\sigma \in \Sigma^{\omega} : \sigma \text{ is good}\}$. Intuitively, L is the language of sequences where each occurrence of p is matched by a later occurrence of q.

- (a) Show that $L \cap \llbracket \mathbf{GF}p \rrbracket = \llbracket (\mathbf{GF}p) \wedge (\mathbf{GF}q) \rrbracket$.
- (b) Show that $L \cap \{p\}^* \{q\}^* \emptyset^{\omega} = L'$ where $L' = \{\{p\}^m \{q\}^n \emptyset^{\omega} : m \le n\}.$
- (c) Show that there is no Büchi automata recognizing L'. [Hint:
- (d) Show that there is no Büchi automata recognizing L. [Hint:

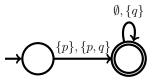
Solution 4.1 (a)



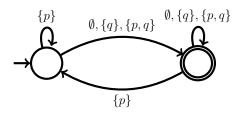
(b) Note that $(\mathbf{GF}p) \to (\mathbf{F}q) \equiv \neg(\mathbf{GF}p) \lor (\mathbf{F}q) \equiv (\mathbf{FG}\neg p) \lor (\mathbf{F}q)$. We construct Büchi automata for $\mathbf{FG}\neg p$ and $\mathbf{F}q$, and take their union:



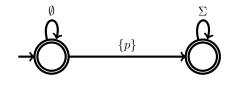
(c) Note that $p \wedge \neg(\mathbf{XF}p) \equiv p \wedge \mathbf{XG}\neg p$. We construct a Büchi automaton for $p \wedge \mathbf{XG}\neg p$:

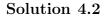


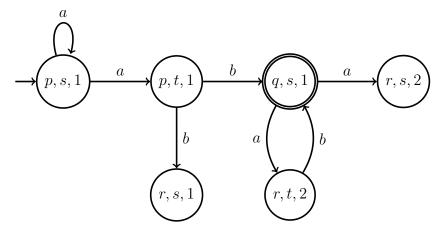
(d)



(e)







The above automaton is non deterministic. However, an equivalent deterministic automaton is obtained as follows:

- the self-loop from the first state is moved to the second state (from left to right),
- transitions $(p, t, 1) \xrightarrow{b} (r, s, 1)$ and $(q, s, 1) \xrightarrow{a} (r, s, 2)$ are removed.

Solution 4.3

(a) \Rightarrow) Let $\sigma \in L \cap \llbracket \mathbf{GF}p \rrbracket$. Let f be the injection that makes σ good. Since $\sigma \models \mathbf{GF}p$, P_{σ} is infinite. Since f is an injection from P_{σ} to Q_{σ} , the latter must also be infinite. Therefore, $\sigma \models \mathbf{GF}q$.

 \Leftarrow) Let $\sigma \in \llbracket (\mathbf{GF}p) \land (\mathbf{GF}q) \rrbracket$. It follows immediately that $\sigma \in \llbracket \mathbf{GF}p \rrbracket$. It remains to show that $\sigma \in L$. Let $i_0 < i_1 < \cdots$ be the positions of σ where p holds. Note that $P_{\sigma} = \{i_j : j \in \mathbb{N}\}$. For every $j \in \mathbb{N}$, we define a function $f : P_{\sigma} \to Q_{\sigma}$ as follows:

$$f(i_j) = \begin{cases} \text{smallest } k \text{ s.t. } q \in \sigma(k) \text{ and } k \ge i_j & \text{if } j = 0, \\ \text{smallest } k \text{ s.t. } q \in \sigma(k) \text{ and } k \ge \max(i_j, f(i_{j-1}) + 1) & \text{otherwise.} \end{cases}$$

Note that f is well-defined because q holds infinitely often in σ . It is immediate that $i_j \leq f(i_j)$ for every $j \in \mathbb{N}$. Moreover, $f(i_0) < f(i_1) < f(i_2) < \cdots$, and hence f must be injective. Thus, $\sigma \in L$.

(b) \Leftarrow) Let $\sigma \in L'$. We have $\sigma = \{p\}^m \{q\}^n \emptyset^\omega$ for some $m \leq n$. We have $P_\sigma = \{0, 1, \ldots, m-1\}$ and $Q_\sigma = \{m, m+1, \ldots, m+n-1\}$. Let f be the function such that f(i) = m + i. Observe that f is an injection from P_σ to Q_σ and that $i \leq f(i)$ for every $i \in P_\sigma$. Therefore, $\sigma \in L$ and hence $\sigma \in L \cap \{p\}^* \{q\}^* \emptyset^\omega$.

⇒) Let $\sigma \in L \cap \{p\}^* \{q\}^* \emptyset^\omega$. There exist $m, n \in \mathbb{N}$ such that $\sigma = \{p\}^m \{q\}^n \emptyset^\omega$. If $m \leq n$, then we are done. Suppose for the sake of contradiction that m > n. Let f be the injection that makes σ good. Since $|P_{\sigma}| = m > n = |Q_{\sigma}|$, the pigeonhole principle implies the existence of $i, j \in P_{\sigma}$ such that $i \neq j$ and f(i) = f(j). This is a contradiction since f is injective.

(c) For the sake of contradiction, suppose there exists a Büchi automaton $B = (Q, \Sigma, \delta, Q_0, F)$ such that $\mathcal{L}(B) = L'$. Let m = |Q| and let $\sigma = \{p\}^m \{q\}^m \emptyset^{\omega}$. Since $\sigma \in \mathcal{L}(B)$, there exist $q_0, q_1, \ldots \in Q$ such that $q_0 \in Q_0$, there are infinitely many indices *i* such that $q_i \in F$ and

$$q_0 \xrightarrow{\sigma_0} q_1 \xrightarrow{\sigma_1} q_2 \cdots$$

By the pigeonhole principle, there exist $0 \leq i < j \leq m$ such that $q_i = q_j$. Let $u = \sigma_0 \sigma_1 \cdots \sigma_{i-1}, v = \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}$ and $w = \sigma_j \sigma_{j+1} \cdots$. We have:

$$q_0 \xrightarrow{u} q_i \xrightarrow{v^{m+1}} q_j \xrightarrow{w} \cdots$$

Thus, $\sigma' \in \mathcal{L}(B)$ where $\sigma' = uv^{m+1}w$. Note that v solely consists of the letter $\{p\}$, hence $|P_{\sigma'}| \ge m+1 > m = |Q_{\sigma'}|$, which contradicts $\sigma \in \mathcal{L}(B) = L'$.

(d) Suppose that L is recognized by some Büchi automaton. Since ω -regular languages are closed under intersection, it means that $L \cap \{p\}^* \{q\}^* \emptyset^{\omega}$ is also ω -regular, and hence that L' as well by (a). This contradicts (b).