Technische Universitiat Miinchen (I7) Summer Semester 2018
J. Esparza / M. Blondin / P. Ashok 26.04.2018

Model Checking — Exercise sheet 3

General tips on Spin

Use the command spin filename.pml to simulate the model and spin -a filename.pml
to generate the verifier pan.c. This can be compiled into an executable pan by using the
command gcc -o pan pan.c and can be run using the command ./pan. If you want to
check LTL properties using pan, then you also need to use the option -a (find acceptance
cycles) and sometimes the option -mN (where N is the maximum search depth, eg. 100000).
If you have multiple LTL properties, they can be chosen using the option -N followed by
the name of the property (eg. p1).

An important thing to keep in mind is that warnings, errors and so on appear at the
top of the messages printed by pan. In order to simulate a trail, use ispin’s simulation
tab. Press the ‘Re(run)’ button followed by ‘Rewind’. After that you may use the ‘Step
forward /backward’ buttons to navigate the counter-example.

Exercise 3.1

The general solution for this exercise can be downloaded from the ‘Exercise’ section of the
course page. The following are some useful tips/hits for each sub-question.

1. C-style printf can be used to print out values.

2. A do loop can be used as shown in the sample solution, but you may also use a
select (n : 1 .. 30000) statement to non-deterministically choose n.

3. Labels are useful features when performing LTL model checking and you may use
them to ‘label’ lines or sections of code. Refer to http://spinroot.com/spin/Man/
labels.html for details.

4. In Promela, expressions such as a == b can also be statements. Execution would be
blocked at such statements until the expression is satisfied. We use this as well as
the fact that processes always interleave in order to implement the solution for this
exercise.

5. As mentioned by a student in class, the LTL next operator (X) is not available by
default in Spin as its use makes the partial order reduction technique invalid. For
details, see http://spinroot.com/spin/Man/1tl.html. The solutions are

1t1 p1 { [1 (odd@update -> X((!odd@update) U even@update)) 1}
1tl p2 { [] (even@update -> X((!even@update) U odd@update)) 1}
1t1 p3 { [] (original > 0 -> (original * original) > n) }

1tl p4 { (n%2 == 0) U (n == 1) }

The last property could be interpreted in various ways and has various solutions.


http://spinroot.com/spin/Man/labels.html
http://spinroot.com/spin/Man/labels.html
http://spinroot.com/spin/Man/ltl.html

Comment: Those who attended the tutorial may remember that p4 was being satisfied by
the sample program. The reason happens to be that n is a global variable which is initialized
to 1 inside the init { ... } block, because of which, from the beginning, n == 1 was
satisfied which implies that p4 is satisfied. Mystery solved!

Exercise 3.2

As this exercise was not completed in class, we recommend you try to solve it yourself at
home. The sample solution would be uploaded at a later point of time.



