Summer Semester 2018 19.04.2018

Model Checking – Exercise sheet 2

Exercise 2.1

Let $\varphi = \mathbf{GF}p \to \mathbf{FG}(q \lor r)$ and $\psi = (r \cup \mathbf{X}p) \cup (q \land \neg \mathbf{XX}s)$ be LTL formulas over the atomic propositions $AP = \{p, q, r, s\}$. Say whether the following sequences satisfy φ and ψ . Justify your answers.

 (a) \emptyset^{ω} (f) $\{r\}\emptyset\{p,q,s\}^{\omega}$

 (b) $\{p,q,r,s\}^{\omega}$ (g) $\{r\}\emptyset(\{p,q\}\{r,s\})^{\omega}$

 (c) $\{p\}^{\omega}$ (h) $\{r\}\emptyset\{p\}\{q,r\}(\{p,s\}\emptyset)^{\omega}$

 (d) $\{q\}^{\omega}$ (i) $\{r\}\emptyset\{p\}\{p,q,r\}(\{s\}\emptyset)^{\omega}$

 (e) $\{p,q\}^{\omega}$ (j) $\{q,r\}\emptyset\{p,q\}\emptyset\{r,s\}^{\omega}$

Exercise 2.2

Let $AP = \{s, r, g\}$ be actions of a process: sending a message, receiving a message, and giving a result, respectively. Specify the following properties in LTL, and give example sequences that satisfy and violate the formulas.

- (a) The process always gives a result.
- (b) The process stops communicating after giving its result.
- (c) The process sends infinitely many messages.
- (d) The process only gives a result once.
- (e) The process receives a message after it sends one.
- (f) The process does nothing until it receives a message.

Exercise 2.3

Let $AP = \{p, q\}$. An LTL formula is a tautology if it is satisfied by all sequences over 2^{AP} . Which of the following LTL formulas are tautologies? Justify each answer with a counterexample or a proof.

- (a) $\mathbf{G}p \to \mathbf{F}p$ (b) $\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$ (c) $\neg(p \mathbf{U} q) \leftrightarrow (\neg p \mathbf{U} \neg q)$
- (c) $\mathbf{FG}p \lor \mathbf{FG}\neg p$ (f) $(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \mathbf{U} (p \lor q))$