Model Checking - Sample Solution 5

Exercise 5.1

Extend the definition of NNF to include \mathbf{F} and \mathbf{G}, extend the corresponding $S u b(\phi)$:

- if $\mathbf{F} \phi_{1} \in \operatorname{Sub}(\phi)$ then $\phi_{1} \in \operatorname{Sub}(\phi)$
- if $\mathbf{G} \phi_{1} \in \operatorname{Sub}(\phi)$ then $\phi_{1} \in \operatorname{Sub}(\phi)$,
and extend rules for transitions as follows: $\left(M, \sigma, M^{\prime}\right) \in \Delta$ iff $\sigma=M \cap A P$ and
- if $\mathbf{F} \phi_{1} \in \operatorname{Sub}(\phi)$, then $\mathbf{F} \phi_{1} \in M$ iff $\phi_{1} \in M$ or $\mathbf{F} \phi_{1} \in M^{\prime}$
- if $\mathbf{G} \phi_{1} \in S u b(\phi)$, then $\mathbf{G} \phi_{1} \in M$ iff $\phi_{1} \in M$ and $\mathbf{G} \phi_{1} \in M^{\prime}$

Also, the acceptance condition must be extended for $\mathbf{F}: \mathcal{F}$ contains a set F_{ψ}, for every subformula ψ of the form $\mathbf{F} \phi_{1}$, where

$$
F_{\psi}=\left\{M \in C S(\phi) \mid \phi_{1} \in M \text { or } \neg\left(\mathbf{F} \phi_{1}\right) \in M\right\}
$$

The translated Büchi automaton for $\phi=\mathbf{G} \mathbf{F} p$ is below. Notice that the initial states must contain $\mathbf{G F} p$, and from the translation rule successors of states with $\mathbf{G F} p$ must also contain GFp. So, it is not necessary to construct states without GFp.

Exercise 5.2

Translate ϕ into an NNF formula:

$$
\begin{aligned}
\phi & =\mathbf{G}((\mathbf{X}(p \mathbf{U} q)) \rightarrow((\neg p \wedge \mathbf{F} q) \vee(q \mathbf{U} \mathbf{X} q))) \\
& \equiv \mathbf{G}((\mathbf{X}(\neg p \mathbf{R} \neg q)) \vee((\neg p \wedge \mathbf{F} q) \vee(q \mathbf{U} \mathbf{X} q)))
\end{aligned}
$$

(a) Let $\phi_{1}=\neg p \mathbf{R} \neg q, \phi_{2}=\neg p \wedge \mathbf{F} q$, and $\phi_{3}=q \mathbf{U} \mathbf{X} q$. We have $\phi=\mathbf{G}\left(\mathbf{X} \phi_{1} \vee\left(\phi_{2} \vee\right.\right.$ $\left.\phi_{3}\right)$) and $\operatorname{Sub}(\phi)=\left\{\right.$ true, $\left.\phi, \mathbf{X} \phi_{1} \vee\left(\phi_{2} \vee \phi_{3}\right), \mathbf{X} \phi_{1}, \phi_{2} \vee \phi_{3}, \phi_{1}, \phi_{2}, \phi_{3}, \mathbf{F} q, \mathbf{X} q, p, q\right\} \cup$ $\left\{\right.$ false $\left., \neg \phi, \neg\left(\mathbf{X} \phi_{1} \vee\left(\phi_{2} \vee \phi_{3}\right)\right), \neg \mathbf{X} \phi_{1}, \neg\left(\phi_{2} \vee \phi_{3}\right), \neg \phi_{1}, \neg \phi_{2}, \neg \phi_{3}, \neg \mathbf{F} q, \neg \mathbf{X} q, \neg p, \neg q\right\}$.
(b) Only $\phi, \mathbf{X} \phi_{1}, \phi_{1}, \phi_{3}, \mathbf{F} q, \mathbf{X} q, p, q$ can independently form consistent states. So, $|C S(\phi)|=$ $2^{8}=256$ states
(c) $\mathcal{F}=\left\{F_{q \mathbf{U X} q}, F_{\mathbf{F} q}\right\}$
(d) $\{\phi\} \in F_{q \mathbf{U X} q}$ and $\{\phi\} \in F_{\mathbf{F} q}$
(e) $\{\phi\}$ is reachable because it is an initial state, and it has no successors because $\mathbf{X} \phi_{1} \vee$ $\left(\phi_{2} \vee \phi_{3}\right) \notin\{\phi\}$.
(f) $\{\phi, q \mathbf{U} \mathbf{X} q\}$
(g) $\{\phi, q, q \mathbf{U} \mathbf{X} q, \mathbf{F} q, \mathbf{X} q\}$

Exercise 5.3

(a) $\phi=\mathbf{G} \mathbf{F}(p \wedge(p \mathbf{U}(\neg p \wedge q)))$
(b) Construct a Büchi automaton for $\neg \phi$ by using e.g. the translation in the lecture.
(c) Let $\phi_{1}=\neg p \mathbf{R}(p \vee \neg q)$. Note that ϕ_{1}, p, q are enough to form consistent sets, i.e. we assume that ϕ and $\neg p \vee(\neg p \mathbf{R}(p \vee \neg q))$ are implicitly in every state. So, $C S(\phi)=2^{\left\{\phi_{1}, p, q\right\}}$. However, we know that $\{p\}$ and $\{p, q\}$ have no successors because of \mathbf{G}, and $\left\}\right.$ and $\left\{\phi_{1}, q\right\}$ have no successors because of \mathbf{R}.

(d) Notice that $\neg \phi \equiv \mathbf{F} \mathbf{G}(\neg p \vee(\neg p \mathbf{R}(p \vee \neg q)))$. It suffices to add a self-looping initial state and transitions from it to all states in (c).

