Technische Universität München (I7) J. Křetínský / T. Meggendorfer / P. Ashok Summer Semester 2017 03.04.2017

Model Checking – Exercise sheet 11

Exercise 11.1

Consider the following Kripke structures \mathcal{K}_1 , \mathcal{K}_2 , and \mathcal{K}_3 , over $AP = \{p\}$:

(a) Does \mathcal{K}_2 simulate \mathcal{K}_1 ? If yes, give a simulation relation. Otherwise, explain why.

- (b) Does K₂ simulate K₃? If yes, give a simulation relation. Otherwise, explain why.
 (c) Does K₃ simulate K₂? If yes, give a simulation relation. Otherwise, explain why.
- (d) Does \mathcal{K}_3 simulate \mathcal{K}_1 ? If yes, give a simulation relation. Otherwise, explain why.

Exercise 11.2

Let \mathcal{K}_1 , \mathcal{K}_2 , and \mathcal{K}_3 be Kripke structures. Show that if \mathcal{K}_1 and \mathcal{K}_2 are bisimilar, and \mathcal{K}_2 and \mathcal{K}_3 are bisimilar, then \mathcal{K}_1 and \mathcal{K}_3 are also bisimilar.

Exercise 11.3

Consider the following program with a Boolean variable x. Initially, the value of x is false. The question mark stands for a nondeterministic value.

```
1 x = ?;
2 while (x)
3 x = ?;
4 while (true) {}
```

Let $AP = \{x\}$, where x is true only in states where the variable x is true.

- (a) Construct a Kripke structure $\mathcal{K} = (S, \rightarrow, r, AP, \nu)$ for the above program.
- (b) Let \approx be an equivalence relation on S such that for all $s \approx t$ we have $\nu(s) = \nu(t)$. Construct from \mathcal{K} the abstracted Kripke structure \mathcal{K}' w.r.t. \approx .
- (c) Model check the following formulas with \mathcal{K}' . Refine the abstraction if necessary.

(i)
$$\neg x \mathbf{W} x$$

- (ii) $\mathbf{G}(\neg x \to \mathbf{X} \neg x)$
- (iii) $\mathbf{X}(\neg x \to \mathbf{G} \neg x)$