$\underline{\text { Model Checking - Sample Solution } 11}$

Exercise 11.1

(a) Yes. $H=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{2}\right),\left(s_{4}, t_{0}\right)\right\}$.
(b) No. If there exists a simulation H from \mathcal{K}_{3} to \mathcal{K}_{2}, then we know that $\left(u_{0}, t_{0}\right) \in H$. Since $u_{0} \rightarrow u_{1}$, we have $\left(u_{1}, t_{1}\right) \in H$. However, $u_{1} \rightarrow u_{4}$ and u_{4} satisfies p, but no successors of t_{1} satisfy p, so H cannot exist.
(c) Yes. $H=\left\{\left(t_{0}, u_{0}\right),\left(t_{1}, u_{1}\right),\left(t_{2}, u_{3}\right\}\right.$.
(d) Yes. $H=\left\{\left(s_{0}, u_{0}\right),\left(s_{1}, u_{1}\right),\left(s_{2}, u_{3}\right),\left(s_{3}, u_{3}\right),\left(s_{4}, u_{0}\right)\right\}$. Alternatively, we can also prove that \mathcal{K}_{1} and \mathcal{K}_{2} are bisimilar and use the result from (c).

Exercise 11.2

Let H_{13} be a bisimulation between \mathcal{K}_{1} and \mathcal{K}_{2} and H_{23} be a bisimulation between \mathcal{K}_{2} and \mathcal{K}_{2}. We define $H_{13}=\left\{(s, u) \mid \exists t:(s, t) \in H_{12} \wedge(t, u) \in H_{23}\right\}$ and show that H_{13} is a bisimulation between \mathcal{K}_{1} and \mathcal{K}_{3}.

First, we prove that H_{13} is a simulation from \mathcal{K}_{1} to \mathcal{K}_{3}. Basically, we need to prove that if $(s, u) \in H_{13}$ and $s \rightarrow_{1} s^{\prime}$, then there exists u^{\prime} such that $u \rightarrow_{3} u^{\prime}$ and $\left(s^{\prime}, u^{\prime}\right) \in H_{13}$. From the definition of $(s, u) \in H_{13}$, we know that there exists t such that $(s, t) \in H_{12}$ and $(t, u) \in H_{23}$. Since $(s, t) \in H_{12}$ and $s \rightarrow_{1} s^{\prime}$, there must exist t^{\prime} such that $t \rightarrow_{2} t^{\prime}$ and $\left(s^{\prime}, t^{\prime}\right) \in H_{12}$. Similarly, since $(t, u) \in H_{23}$ and $t \rightarrow_{2} t^{\prime}$, there must exist u^{\prime} such that $u \rightarrow_{3} u^{\prime}$ and $\left(t^{\prime}, u^{\prime}\right) \in H_{23}$. Because $\left(s^{\prime}, t^{\prime}\right) \in H_{12}$ and $\left(t^{\prime}, u^{\prime}\right) \in H_{23}$, by the definition of H_{13} we have $\left(s^{\prime}, u^{\prime}\right) \in H_{13}$.

Analogously, we can prove that $\left\{(u, s) \mid(s, u) \in H_{13}\right\}$ is a simulation from \mathcal{K}_{3} to \mathcal{K}_{1}.

Exercise 11.3

(a) Each state of the following Kripke structure \mathcal{K} is a pair of a program location and a valuation of x.

(b) Let $t_{0}=[s 0]=\left\{s_{0}, s_{1}, s_{3}\right\}$ and $t_{1}=[s 1]=\left\{s_{2}, s_{4}\right\}$. The abstraction \mathcal{K}^{\prime} is as follows:

(c) (i) $\mathcal{K}^{\prime} \models \neg x \mathbf{W} x$
(ii) $\mathcal{K}^{\prime} \notin \mathbf{G}(\neg x \rightarrow \mathbf{X} \neg x)$. A counterexample in \mathcal{K}^{\prime} is $t_{0} t_{1}$, which corresponds to the run $s_{0} s_{2}$ in \mathcal{K}. So, $\mathcal{K} \notin \mathbf{G}(\neg x \rightarrow \mathbf{X} \neg x)$.
(iii) $\mathcal{K}^{\prime} \notin \mathbf{X}(\neg x \rightarrow \mathbf{G} \neg x)$. A counterexample in \mathcal{K}^{\prime} is $t_{0} t_{0} t_{1}^{\omega}$. However, there are no corresponding runs in \mathcal{K} because such paths must start with $s_{0} s_{1}$, but no successors of s_{1} are in t_{1}. Since $s_{0} \in t_{0}$ and s_{0} has a successor in t_{1}, we can refine the abstraction to distinguish s_{0} from $s_{1} \cdot t_{0}^{\prime}=\left\{s_{0}\right\}$ and $t_{0}=\left\{s_{1}, s_{3}\right\}$, and construct a new Kripke structure $\mathcal{K}^{\prime \prime}$ as follows.

We have $\mathcal{K}^{\prime \prime} \models \mathbf{X}(\neg x \rightarrow \mathbf{G} \neg x)$.

