## Model Checking – Sample Solution 11

## Exercise 11.1

- (a) Yes.  $H = \{(s_0, t_0), (s_1, t_1), (s_2, t_2), (s_3, t_2), (s_4, t_0)\}.$
- (b) No. If there exists a simulation H from  $\mathcal{K}_3$  to  $\mathcal{K}_2$ , then we know that  $(u_0, t_0) \in H$ . Since  $u_0 \to u_1$ , we have  $(u_1, t_1) \in H$ . However,  $u_1 \to u_4$  and  $u_4$  satisfies p, but no successors of  $t_1$  satisfy p, so H cannot exist.
- (c) Yes.  $H = \{(t_0, u_0), (t_1, u_1), (t_2, u_3)\}$ .
- (d) Yes.  $H = \{(s_0, u_0), (s_1, u_1), (s_2, u_3), (s_3, u_3), (s_4, u_0)\}$ . Alternatively, we can also prove that  $\mathcal{K}_1$  and  $\mathcal{K}_2$  are bisimilar and use the result from (c).

## Exercise 11.2

Let  $H_{13}$  be a bisimulation between  $\mathcal{K}_1$  and  $\mathcal{K}_2$  and  $H_{23}$  be a bisimulation between  $\mathcal{K}_2$  and  $\mathcal{K}_2$ . We define  $H_{13} = \{(s, u) \mid \exists t : (s, t) \in H_{12} \land (t, u) \in H_{23}\}$  and show that  $H_{13}$  is a bisimulation between  $\mathcal{K}_1$  and  $\mathcal{K}_3$ .

First, we prove that  $H_{13}$  is a simulation from  $\mathcal{K}_1$  to  $\mathcal{K}_3$ . Basically, we need to prove that if  $(s, u) \in H_{13}$  and  $s \to_1 s'$ , then there exists u' such that  $u \to_3 u'$  and  $(s', u') \in H_{13}$ . From the definition of  $(s, u) \in H_{13}$ , we know that there exists t such that  $(s, t) \in H_{12}$ and  $(t, u) \in H_{23}$ . Since  $(s, t) \in H_{12}$  and  $s \to_1 s'$ , there must exist t' such that  $t \to_2 t'$ and  $(s', t') \in H_{12}$ . Similarly, since  $(t, u) \in H_{23}$  and  $t \to_2 t'$ , there must exist u' such that  $u \to_3 u'$  and  $(t', u') \in H_{23}$ . Because  $(s', t') \in H_{12}$  and  $(t', u') \in H_{23}$ , by the definition of  $H_{13}$  we have  $(s', u') \in H_{13}$ .

Analogously, we can prove that  $\{(u, s) \mid (s, u) \in H_{13}\}$  is a simulation from  $\mathcal{K}_3$  to  $\mathcal{K}_1$ .

## Exercise 11.3

(a) Each state of the following Kripke structure  $\mathcal{K}$  is a pair of a program location and a valuation of  $\mathbf{x}$ .



(b) Let  $t_0 = [s_0] = \{s_0, s_1, s_3\}$  and  $t_1 = [s_1] = \{s_2, s_4\}$ . The abstraction  $\mathcal{K}'$  is as follows:



- (c) (i)  $\mathcal{K}' \models \neg x \mathbf{W} x$ 
  - (ii)  $\mathcal{K}' \not\models \mathbf{G}(\neg x \to \mathbf{X} \neg x)$ . A counterexample in  $\mathcal{K}'$  is  $t_0 t_1$ , which corresponds to the run  $s_0 s_2$  in  $\mathcal{K}$ . So,  $\mathcal{K} \not\models \mathbf{G}(\neg x \to \mathbf{X} \neg x)$ .
  - (iii)  $\mathcal{K}' \not\models \mathbf{X}(\neg x \to \mathbf{G} \neg x)$ . A counterexample in  $\mathcal{K}'$  is  $t_0 t_0 t_1^{\omega}$ . However, there are no corresponding runs in  $\mathcal{K}$  because such paths must start with  $s_0 s_1$ , but no successors of  $s_1$  are in  $t_1$ . Since  $s_0 \in t_0$  and  $s_0$  has a successor in  $t_1$ , we can refine the abstraction to distinguish  $s_0$  from  $s_1$ .  $t'_0 = \{s_0\}$  and  $t_0 = \{s_1, s_3\}$ , and construct a new Kripke structure  $\mathcal{K}''$  as follows.



We have  $\mathcal{K}'' \models \mathbf{X}(\neg x \to \mathbf{G} \neg x)$ .