Model Checking - Sample Solution 4

Exercise 4.1

(a) Not equivalent. A counterexample is $\sigma=\{ \}\{p, q\}\{q\}^{\omega}$, because $\sigma \not \models \phi$ but $\sigma \models \psi$.
(b) Not equivalent. A counterexample is $\sigma=\{p, q\}\{q\}^{\omega}$, because $\sigma \models \phi$ but $\sigma \not \models \psi$.
(c) Equivalent.
" \Rightarrow " Let $\sigma \models(p \mathbf{U} q) \mathbf{U} q$ and i be the first position where q holds. If $i=0$, then $q \in \sigma(0)$ and trivially $\sigma \models p \mathbf{U} q$. If $i>0$, then $\sigma^{k} \models p \mathbf{U} q$ for all k between 0 and $i-1$, and therefore $\sigma \models p \mathbf{U} q$, since $\sigma^{0}=\sigma$.
" \Leftarrow " Let $\sigma \models p \mathbf{U} q$ and i be the first position where q holds. If $i=0$, then trivially $\sigma \models(p \mathbf{U} q) \mathbf{U} q$. If $i>0$, then $\sigma^{k} \models p$ for all k between 0 and $i-1$. Since $\sigma^{i} \models q$, we have $\sigma^{k} \models p \mathbf{U} q$ also, and consequently $\sigma \models(p \mathbf{U} q) \mathbf{U} q$.
(d) Not equivalent. A counterexample is $\sigma=\{p, q\}\{q\}\{r\}\{ \}^{\omega}$, because $\sigma \models \phi$ but $\sigma \not \models \psi$.

Exercise 4.2

(a) Let $\sigma \models \phi$. We define $n_{\phi}(\sigma)$ inductively over $\mathbf{N N F}_{-\mathbf{R}}$ formulae:

- If $\phi=a$, where $a \in A P$, then $a \in \sigma(0)$ and $\forall \sigma^{\prime}: \sigma(0) \sigma^{\prime} \models \phi$. So, $n_{\phi}(\sigma)=0$.
- If $\phi=\neg a$, where $a \in A P$, we have similarly $n_{\phi}(\sigma)=0$.
- If $\phi=\phi_{1} \wedge \phi_{2}$, then $\sigma \models \phi_{1}$ and $\sigma \models \phi_{2}$. We have $n_{\phi}(\sigma)=\max \left(n_{\phi_{1}}(\sigma), n_{\phi_{2}}(\sigma)\right)$.
- If $\phi=\phi_{1} \vee \phi_{2}$, then $\sigma \models \phi_{1}$ or $\sigma \models \phi_{2}$. If $\phi \models \phi_{1}$, then $n_{\phi}(\sigma)=n_{\phi_{1}}(\sigma)$. Otherwise, $n_{\phi}(\sigma)=n_{\phi_{2}}(\sigma)$.
- If $\phi=\mathbf{X} \phi_{1}$, then $\sigma^{1} \models \phi_{1}$. So, $n_{\phi}(\sigma)=n_{\phi_{1}}\left(\sigma^{1}\right)+1$.
- If $\phi=\phi_{1} \mathbf{U} \phi_{2}$, then $\exists i: \sigma^{i} \models \phi_{2} \wedge \forall k<i: \sigma^{k} \models \phi_{1}$. We take $n_{\phi}(\sigma)=$ $\max \left(i+n_{\phi_{2}}\left(\sigma^{i}\right), \max _{k=0}^{i}\left(k+n_{\phi_{1}}\left(\sigma^{k}\right)\right)\right)$.
(b) We prove by induction that

$$
\sigma \models \phi \Leftrightarrow D(\sigma) \models \phi \Leftrightarrow D(\sigma)^{1} \models \phi
$$

- If ϕ is a or $\neg a$, where $a \in A P$, the property trivially holds, because $\sigma(0)=$ $D(\sigma)(0)=D(\sigma)^{1}(0)$.
- If ϕ is $\phi_{1} \wedge \phi_{2}$ or $\phi_{1} \vee \phi_{2}$, the proof trivially follows from the induction hypothesis.
- If $\phi=\phi_{1} \mathbf{U} \phi_{2}$, we prove each direction as follows:
$\sigma \models \phi_{1} \mathbf{U} \phi_{2} \Rightarrow D(\sigma) \models \phi_{1} \mathbf{U} \phi_{2}$
From the definition, $\exists i: \sigma^{i} \models \phi_{2} \wedge \forall k<i: \sigma^{k} \models \phi_{1}$. We need to prove that $\exists i^{\prime}: D(\sigma)^{i^{\prime}} \models \phi_{2} \wedge \forall k^{\prime}<i^{\prime}: D(\sigma)^{k^{\prime}} \models \phi_{1}$.
Let $i^{\prime}=2 i$. By induction hypothesis, we have $D(\sigma)^{i^{\prime}} \models \phi_{2}$. Also, for all $k<i$ where $\sigma^{k} \models \phi_{1}$, we know that $D(\sigma)^{2 k} \models \phi_{1}$ and $D(\sigma)^{2 k+1} \models \phi_{1}$. We can conclude that $D(\sigma)^{k^{\prime}} \models \phi_{1}$ for all $k^{\prime}<i^{\prime}$.
$\frac{D(\sigma) \models \phi_{1} \mathbf{U} \phi_{2} \Rightarrow D(\sigma)^{1} \models \phi_{1} \mathbf{U} \phi_{2}}{\text { If } D(\sigma) \models \phi_{2}, \text { then } D(\sigma)^{1} \models \phi_{2} .}$
Otherwise, $\exists i \geq 1: D(\sigma)^{i} \models \phi_{2} \wedge \forall k<i: D(\sigma)^{k} \models \phi_{1}$. This implies that $\exists i^{\prime} \geq 0: D(\sigma)^{1+i^{\prime}} \models \phi_{2} \wedge \forall k^{\prime}<i^{\prime}: D(\sigma)^{1+k^{\prime}} \models \phi_{1}$, which means $D(\sigma)^{1} \models \phi_{1} \mathbf{U} \phi_{2}$ by definition.
$\underline{D(\sigma)^{1} \models \phi_{1} \mathbf{U} \phi_{2} \Rightarrow \sigma \models \phi_{1} \mathbf{U} \phi_{2}}$
From the definition, $\exists i: D(\sigma)^{1+i} \models \phi_{2} \wedge \forall k<i: D(\sigma)^{1+k} \models \phi_{1}$. We need to prove that $\exists i^{\prime}: \sigma^{i^{\prime}} \models \phi_{2} \wedge \forall k^{\prime}<i^{\prime}: \sigma^{k^{\prime}} \models \phi_{1}$. We proceed by proving that such i^{\prime} and k^{\prime} exist as follows:
If i is even, $D(\sigma)^{1+i}=D\left(\sigma^{i / 2}\right)^{1} \models \phi_{2}$, hence by induction hypothesis $\sigma^{i / 2} \models \phi_{2}$. Furthermore, for any even $k<i$, we have $D(\sigma)^{1+k}=D\left(\sigma^{k / 2}\right)^{1}$, and by induction hypothesis $\sigma^{k / 2} \models \phi_{1}$. Therefore, $\forall k^{\prime}<i / 2: \sigma^{k^{\prime}} \models \phi_{1}$.
If i is odd, $D(\sigma)^{1+i}=D\left(\sigma^{(i+1) / 2}\right) \models \phi_{2}$, hence by induction hypothesis $\sigma^{(i+1) / 2} \models$ ϕ_{2}. Furthermore, for any even $k<i$, we have $D(\sigma)^{1+k}=D\left(\sigma^{k / 2}\right)^{1}$, and by induction hypothesis $\sigma^{k / 2} \models \phi_{1}$. Therefore, $\forall k^{\prime}<(i+1) / 2: \sigma^{k^{\prime}} \models \phi_{1}$.
- If $\phi=\phi_{1} \mathbf{R} \phi_{2}$, the proof is similar to the previous case.

Exercise 4.3

(a)

(b)

(c)

