Model Checking – Exercise sheet 4

Exercise 4.1

Which of the following pairs ϕ and ψ of LTL formulas are equivalent, i.e. for which pairs is it true that for all sequences σ , the equivalence $\sigma \models \phi \Leftrightarrow \sigma \models \psi$ holds? In each case, give a proof if the equivalence holds or a counterexample otherwise.

(a)	$\phi = \mathbf{F} p \wedge \mathbf{G} q$	$\psi = \mathbf{F}(p \wedge \mathbf{G} q)$
(b)	$\phi = \mathbf{F} p \wedge \mathbf{G} q$	$\psi = \mathbf{G}(\mathbf{F}p \wedge q)$
(c)	$\phi = (p \mathbf{U} q) \mathbf{U} q$	$\psi = p \mathbf{U} q$
(d)	$\phi = (p \mathbf{U} q) \mathbf{U} (q \mathbf{U} r)$	$\psi = p \mathbf{U} r$

Exercise 4.2

Let AP be a set of atomic propositions and **NNF** be the set of NNF formulae over AP. Recall from the lecture that a formula is in **NNF** if negations only occur in front of atomic propositions, and only the following operators are allowed in the formula: \vee , \wedge , **X**, **U**, **R**.

(a) Let $\mathbf{NNF}_{-\mathbf{R}}$ be the set of NNF formulae in which the operator \mathbf{R} does not occur. Show that for any formula $\phi \in \mathbf{NNF}_{-\mathbf{R}}$ and $\sigma \in (2^{AP})^{\omega}$ such that $\sigma \models \phi$, there exists an integer $n_{\phi}(\sigma)$ such that $\sigma(0) \dots \sigma(n_{\phi}(\sigma))$ characterizes whether $\sigma \models \phi$ or not. Formally, prove that

$$\sigma \models \phi \Leftrightarrow \sigma(0) \dots \sigma(n_{\phi}(\sigma)) \sigma' \models \phi$$

for any $\sigma' \in (2^{AP})^{\omega}$.

(b) Let $\mathbf{NNF_{-X}}$ be the set of NNF formulae in which the operator \mathbf{X} does not occur. Show that any formula $\phi \in \mathbf{NNF_{-X}}$ cannot distinguish $\sigma \in (2^{AP})^{\omega}$ and $D(\sigma) = \sigma(0)\sigma(0)\sigma(1)\sigma(1)\dots$, i.e.

$$\sigma \models \phi \Leftrightarrow D(\sigma) \models \phi$$

Exercise 4.3

For each set of atomic propositions AP and LTL formula over AP below, construct a Büchi automaton \mathcal{B} with the alphabet 2^{AP} such that $\mathcal{L}(\mathcal{B}) = \llbracket \phi \rrbracket$.

(a)
$$\mathbf{G}(p \wedge \mathbf{F} q)$$
, where $AP = \{p, q\}$

(b)
$$\mathbf{G}(p \to \mathbf{X}(q \mathbf{U} r))$$
, where $AP = \{p, q, r\}$

(c)
$$p \mathbf{U} (q \mathbf{U} r)$$
, where $AP = \{p, q, r\}$