Model Checking - Exercise sheet 4

Exercise 4.1

Which of the following pairs ϕ and ψ of LTL formulas are equivalent, i.e. for which pairs is it true that for all sequences σ, the equivalence $\sigma \models \phi \Leftrightarrow \sigma \models \psi$ holds? In each case, give a proof if the equivalence holds or a counterexample otherwise.
(a) $\phi=\mathbf{F} p \wedge \mathbf{G} q$
$\psi=\mathbf{F}(p \wedge \mathbf{G} q)$
(b) $\phi=\mathbf{F} p \wedge \mathbf{G} q$
$\psi=\mathbf{G}(\mathbf{F} p \wedge q)$
(c) $\quad \phi=(p \mathbf{U} q) \mathbf{U} q$
$\psi=p \mathbf{U} q$
(d) $\phi=(p \mathbf{U} q) \mathbf{U}(q \mathbf{U} r)$
$\psi=p \mathbf{U} r$

Exercise 4.2

Let $A P$ be a set of atomic propositions and NNF be the set of NNF formulae over $A P$. Recall from the lecture that a formula is in NNF if negations only occur in front of atomic propositions, and only the following operators are allowed in the formula: $\vee, \wedge, \mathbf{X}, \mathbf{U}, \mathbf{R}$.
(a) Let $\mathbf{N N F}_{-\mathbf{R}}$ be the set of NNF formulae in which the operator \mathbf{R} does not occur. Show that for any formula $\phi \in \mathbf{N N F}_{-\mathbf{R}}$ and $\sigma \in\left(2^{A P}\right)^{\omega}$ such that $\sigma \models \phi$, there exists an integer $n_{\phi}(\sigma)$ such that $\sigma(0) \ldots \sigma\left(n_{\phi}(\sigma)\right)$ characterizes whether $\sigma \models \phi$ or not. Formally, prove that

$$
\sigma \models \phi \Leftrightarrow \sigma(0) \ldots \sigma\left(n_{\phi}(\sigma)\right) \sigma^{\prime} \models \phi
$$

for any $\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}$.
(b) Let $\mathbf{N N F}_{-\mathbf{x}}$ be the set of NNF formulae in which the operator \mathbf{X} does not occur. Show that any formula $\phi \in \mathbf{N N F}_{-\mathbf{x}}$ cannot distinguish $\sigma \in\left(2^{A P}\right)^{\omega}$ and $D(\sigma)=$ $\sigma(0) \sigma(0) \sigma(1) \sigma(1) \ldots$, i.e.

$$
\sigma \models \phi \Leftrightarrow D(\sigma) \models \phi
$$

Exercise 4.3

For each set of atomic propositions $A P$ and LTL formula over $A P$ below, construct a Büchi automaton \mathcal{B} with the alphabet $2^{A P}$ such that $\mathcal{L}(\mathcal{B})=\llbracket \phi \rrbracket$.
(a) $\mathbf{G}(p \wedge \mathbf{F} q)$, where $A P=\{p, q\}$
(b) $\mathbf{G}(p \rightarrow \mathbf{X}(q \mathbf{U} r))$, where $A P=\{p, q, r\}$
(c) $p \mathbf{U}(q \mathbf{U} r))$, where $A P=\{p, q, r\}$

