J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth

Exercise 12.1: Abstraction refinement

We consider the following program, over the integer variables x and y:

```
1 if (x >= 0) x = -x;
2 if (y >= 0) y = -y;
3 if (x + y > 0) error;
4 end
```

- 1. Give the set of configurations of the program (some may not be reachable).
- 2. Draw the abstract transition system with the predicates l_1, l_2, l_3, l_4 and "error".
- 3. Give a path ρ in the abstract transition system reaching a state where "error" holds.
- 4. What is the longest prefix (denoted ρ') of ρ that can be concretized ?
- 5. Denote q the state in the abstract transition system reached by ρ' . Give a predicate that separates configurations reachable by ρ' from configurations that admit a successor.
- 6. Draw the abstract transition system with that additional predicate.
- 7. How many times does we have to repeat the abstraction refinement technique to exhibit an abstract transition system that does not reach the error state ? Draw that transition system, how many predicates have we introduced ?

Exercise 12.2: Pre* in pushdown systems

Consider the following pushdown system, with stack alphabet $\Gamma = \{a, b\}$.

By $1 \xrightarrow{\text{push } a} 2$, we indicate the presence of transitions $1a \hookrightarrow 2aa$ and $1b \hookrightarrow 2ab$. By $(4) \xrightarrow{\text{pop } a} (5)$, we indicate the presence of the transition $4a \hookrightarrow 5$.

- 1. Let $C = 7b^* = \{7, 7b, 7bb, 7bbb, \ldots\}$. Build the p-automaton accepting $\operatorname{pre}^*(7b^*)$.
- 2. Give the minimal automaton accepting the language of all stacks w such that $1w \in \text{pre}^*(C)$.