Model Checking - Solution sheet 11

Exercise 11.1: Simulation and bisimulation

1. T_{2} simulates T_{1}, e.g. the relation $R_{2 \rightarrow 1}$: $\{(1,1),(2,2),(2,3),(3,4),(3,5),(4,4)\}$
2. T_{1} simulates T_{2}, e.g. the relation $R_{1 \rightarrow 2}$: $\{(1,1),(3,2),(4,4),(5,3)\}$
3. Player 1 picks T_{1}, goes to 2 : player 2 must go to 2 in T_{2}. Then player 1 picks T_{2}, goes to 4 with c. Player 2 can't respond, hence T_{1} and T_{2} aren't bisimilar.
4. Remark the bisimulation relation $R_{3 \leftrightarrow 4}$: $\{(1,1),(5,1),(2,3),(3,2),(4,2)\}$. As a strategy, to answer any move of Player 1, Player 2 just needs to pick an element that is reachable with the same action as Player 1 fired, and that is in relation $R_{3 \leftrightarrow 4}$ to the element reached by Player 1 , which she can always do as $R_{3 \leftrightarrow 4}$ is a bisimulation relation.
5. If S_{1} and S_{2} are bisimilar and S_{2} and S_{3} are bisimilar, denote $R_{1 \leftrightarrow 2}$ and $R_{2 \leftrightarrow 3}$ explicit bisimulation relations. We define the relation $R_{1 \leftrightarrow 3}$ as follows: $R_{1 \leftrightarrow 3}=\left\{\left(x_{1}, x_{3}\right) \mid \exists x_{2} .\left(x_{1}, x_{2}\right) \in R_{1 \leftrightarrow 2} \wedge\left(x_{2}, x_{3}\right) \in R_{2 \leftrightarrow 3}\right\}$.
Let us show that $R_{1 \leftrightarrow 3}$ is a simulation relation of S_{1} by S_{3}. We need to show that if $\left(x_{1}, x_{3}\right) \in R_{1 \leftrightarrow 3}$, then for any action α, and any $x_{1}^{\prime} \in S_{1}$, if $x_{1} \xrightarrow{\alpha} x_{1}^{\prime}$ is feasible in S_{1}, we can find x_{3}^{\prime} such that $\left(x_{1}^{\prime}, x_{3}^{\prime}\right) \in R_{1 \leftrightarrow 3}$ and $x_{3} \xrightarrow{\alpha} x_{3}^{\prime}$ is feasible in S_{3}.

By definition of $R_{1 \leftrightarrow 3}$ there exists x_{2} such that $\left(x_{1}, x_{2}\right) \in R_{1 \leftrightarrow 2}$ and $\left(x_{2}, x_{3}\right) \in$ $R_{2 \leftrightarrow 3}$. Since $R_{1 \leftrightarrow 2}$ is a bisimulation relation, it is also a simulation relation of S_{1} by S_{2}, thus we can find x_{2}^{\prime} such that $x_{2} \xrightarrow{\alpha} x_{2}^{\prime}$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in R_{1 \leftrightarrow 2}$. Since $R_{2 \leftrightarrow 3}$ is a bisimulation relation, it is also a simulation relation of S_{2} by S_{3}, thus we can find x_{3}^{\prime} such that $x_{3} \xrightarrow{\alpha} x_{3}^{\prime}$ and $\left(x_{2}^{\prime}, x_{3}^{\prime}\right) \in R_{2 \leftrightarrow 3}$. Clearly $\left(x_{1}^{\prime}, x_{3}^{\prime}\right) \in R_{1 \leftrightarrow 3}$, therefore. $R_{1 \leftrightarrow 3}$ is a simulation relation of S_{1} by S_{3}.
In a similar manner we can show that $R_{1 \leftrightarrow 3}$ is also simulation relation of S_{3} by S_{1}, hence a bisimulation relation, therefore S_{1} and S_{3} are bisimilar.

Exercise 11.2: Abstraction of a simple program

```
while(true) {
    z = y;
    y = y + x;
    x = z;
}
```

1. The size of the transition system is infinite: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times\{1,2,3\}$.

Exercise 11.3: Abstraction of a more complex program

1. In the abstract Kripke structure, we may reach a state where all values are negative (e.g. when branching, always chosing the transition that decreases the number of predicates holding)
2. In the concrete transition system, we may reach a state where all values are negative (e.g $x=1 ; y=3 ; \mathrm{z}=1$; remark that these initial values do not concretizes the aforementioned abstract path).
3. We can easily find a loop where all predicates always hold (hence all predicates eventually always hold).
4. $x=2 ; y=1 ; z=1$;
5. The two systems cannot be bisimilar, typically the concrete transition sytem is deterministic while the abstract Kripke structure is not: the concrete transition system cannot simulate the abstract Kripke structure.
