I7

J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth July 2015

Model Checking – Solution sheet 11

Exercise 11.1: Simulation and bisimulation

- 1. T_2 simulates T_1 , e.g. the relation $R_{2\to 1}$: {(1, 1), (2, 2), (2, 3), (3, 4), (3, 5), (4, 4)}
- 2. T_1 simulates T_2 , e.g. the relation $R_{1\to 2}$: {(1,1), (3,2), (4,4), (5,3)}
- 3. Player 1 picks T_1 , goes to 2: player 2 must go to 2 in T_2 . Then player 1 picks T_2 , goes to 4 with c. Player 2 can't respond, hence T_1 and T_2 aren't bisimilar.
- 4. Remark the bisimulation relation $R_{3\leftrightarrow 4}$: {(1,1), (5,1), (2,3), (3,2), (4,2)}. As a strategy, to answer any move of Player 1, Player 2 just needs to pick an element that is reachable with the same action as Player 1 fired, and that is in relation $R_{3\leftrightarrow 4}$ to the element reached by Player 1, which she can always do as $R_{3\leftrightarrow 4}$ is a bisimulation relation.
- 5. If S_1 and S_2 are bisimilar and S_2 and S_3 are bisimilar, denote $R_{1\leftrightarrow 2}$ and $R_{2\leftrightarrow 3}$ explicit bisimulation relations. We define the relation $R_{1\leftrightarrow 3}$ as follows: $R_{1\leftrightarrow 3} = \{(x_1, x_3) \mid \exists x_2 . (x_1, x_2) \in R_{1\leftrightarrow 2} \land (x_2, x_3) \in R_{2\leftrightarrow 3}\}.$

Let us show that $R_{1\leftrightarrow 3}$ is a simulation relation of S_1 by S_3 . We need to show that if $(x_1, x_3) \in R_{1\leftrightarrow 3}$, then for any action α , and any $x'_1 \in S_1$, if $x_1 \stackrel{\alpha}{\to} x'_1$ is feasible in S_1 , we can find x'_3 such that $(x'_1, x'_3) \in R_{1\leftrightarrow 3}$ and $x_3 \stackrel{\alpha}{\to} x'_3$ is feasible in S_3 .

By definition of $R_{1\leftrightarrow 3}$ there exists x_2 such that $(x_1, x_2) \in R_{1\leftrightarrow 2}$ and $(x_2, x_3) \in R_{2\leftrightarrow 3}$. Since $R_{1\leftrightarrow 2}$ is a bisimulation relation, it is also a simulation relation of S_1 by S_2 , thus we can find x'_2 such that $x_2 \xrightarrow{\alpha} x'_2$ and $(x'_1, x'_2) \in R_{1\leftrightarrow 2}$. Since $R_{2\leftrightarrow 3}$ is a bisimulation relation, it is also a simulation relation of S_2 by S_3 , thus we can find x'_3 such that $x_3 \xrightarrow{\alpha} x'_3$ and $(x'_2, x'_3) \in R_{2\leftrightarrow 3}$. Clearly $(x'_1, x'_3) \in R_{1\leftrightarrow 3}$, therefore. $R_{1\leftrightarrow 3}$ is a simulation relation of S_1 by S_3 .

In a similar manner we can show that $R_{1\leftrightarrow 3}$ is also simulation relation of S_3 by S_1 , hence a bisimulation relation, therefore S_1 and S_3 are bisimilar.

Exercise 11.2: Abstraction of a simple program

1. The size of the transition system is infinite: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \{1, 2, 3\}$.

Exercise 11.3: Abstraction of a more complex program

- 1. In the abstract Kripke structure, we may reach a state where all values are negative (e.g. when branching, always chosing the transition that decreases the number of predicates holding)
- 2. In the concrete transition system, we may reach a state where all values are negative (e.g x=1; y=3; z=1; remark that these initial values do not concretizes the aforementioned abstract path).
- 3. We can easily find a loop where all predicates always hold (hence all predicates *eventually* always hold).
- 4. x=2; y=1; z=1;
- 5. The two systems cannot be bisimilar, typically the concrete transition system is deterministic while the abstract Kripke structure is not: the concrete transition system cannot simulate the abstract Kripke structure.