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Exercise 11.1: Simulation and bisimulation

1. T5 simulates 77, e.g. the relation Ry_,q:

—(1) —(1) {(1,1),(2,2),(2,3),(3,4),(3,5), (4, 4)}
‘i/ \‘j la 2. Ty simulates T5, e.g. the relation Ry _.:

{(1,1),(3,2),(4,4),(5,3)}

/ b c 3. Player 1 picks T7, goes to 2: player 2

must go to 2 in 7. Then player 1 picks
@ @ T5, goes to 4 with c. Player 2 can’t re-
spond, hence T} and T, aren’t bisimilar.

_> —> 4. Remark the bisimulation relation Rs.4:

la bT {(171)7(571)’(273)7(372)7(4a 2)} As a

strategy, to answer any move of Player

. a 1, Player 2 just needs to pick an element
a,T that is reachable with the same action
. as Player 1 fired, and that is in relation

R34 to the element reached by Player
1, which she can always do as R34 is
. a bisimulation relation.

5. If S7 and S, are bisimilar and S5 and S3 are bisimilar, denote R;.o and

Ry..3 explicit bisimulation relations. We define the relation R;.,3 as follows:
Rics = {(x1,23) | Fua. (21,72) € Rica A (22, 73) € Rowss}

Let us show that R;.3 is a simulation relation of S; by S3. We need to show
that if (z1,23) € Ries, then for any action «, and any 2z € Sy, if 71 5 ot
is feasible in Sp, we can find x4 such that (2, %) € Ri3 and x3 — x4 is
feasible in Sj.

By definition of Rj,,3 there exists 25 such that (x1,22) € Ry and (29, 23) €
Ry 3. Since Rq.9 is a bisimulation relation, it is also a simulation relation
of S; by Sy, thus we can find #, such that xo; = 24 and (2, 7)) € Ris.
Since Rs.,3 is a bisimulation relation, it is also a simulation relation of S5
by Ss, thus we can find 2} such that x5 = 5 and (25, 2%) € Ryes. Clearly
(2, x%) € Riss, therefore. Ry, 3 is a simulation relation of Sy by S;.

In a similar manner we can show that R.,3 is also simulation relation of S3
by Si, hence a bisimulation relation, therefore S; and Ss are bisimilar.



Exercise 11.2: Abstraction of a simple program

while (true) {

1.

z = Y;
y =yt X
X = z;

The size of the transition system is infinite: Z x Z x Z x {1,2, 3}.
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Exercise 11.3: Abstraction of a more complex program

1.

In the abstract Kripke structure, we may reach a state where all values are
negative (e.g. when branching, always chosing the transition that decreases
the number of predicates holding)

In the concrete transition system, we may reach a state where all values are
negative (e.g x=1; y=3; z=1; remark that these initial values do not con-
cretizes the aforementioned abstract path).

We can easily find a loop where all predicates always hold (hence all predi-
cates eventually always hold).

. x=2; y=1; z=1;

The two systems cannot be bisimilar, typically the concrete transition sytem
is deterministic while the abstract Kripke structure is not: the concrete
transition system cannot simulate the abstract Kripke structure.



