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Exercise 8.1: What is syntactic sugar ?

CTL operators are defined as QT where Q is A or E and T is any LTL modal-
ity (X,F,G,U ,W ,R). So many operators means a lot of cases to handle for
inductively proving results on CTL.

1.

AXϕ ≡ ¬EX¬ϕ ϕ1EW ϕ2 ≡ EGϕ1 ∨ (ϕ1E U ϕ2)
EFϕ ≡ true E U ϕ ϕ1AW ϕ2 ≡ ¬(¬ϕ2E U ¬(ϕ1 ∨ ϕ2))
AGϕ ≡ ¬EF¬ϕ ϕ1AU ϕ2 ≡ AFϕ2 ∧ (ϕ1AW ϕ2))
AFϕ ≡ ¬EG¬ϕ ϕ1ERϕ2 ≡ ¬(¬ϕ1AU ¬ϕ2)

ϕ1ARϕ2 ≡ ¬(¬ϕ1E U ¬ϕ2)

2. EX only provides a local information on the direct successors. E U only
provides the existence of a branch which admits a treshold: the converse is
the absence of a treshold on all branch. EG is thus necessary as it allows to
state the absence of a treshold on a branch (or the presence of one on every
branches).

Exercise 8.3: Fixpoint computations

1. We recall that EGq is computed as the greatest fixpoint of the equantion
X = µ(q) ∩ pre(X). Thus we start by considering X = [0, 7].

0{q}

1{p} 2{q} 3{p}

4{p} 5{q}

6{p} 7{q}

0{q}

1{p} 2{q} 3{p}

4{p} 5{q}

6{p} 7{q}

After the first iteration, since pre([0, 7]) = [0, 7], we have all states at which
q holds. Only 7 then has a predecessor for which q holds. The next iteration
does not modify the set X computed, therefore follows states that validate
EGq.

0{q}

1{p} 2{q} 3{p}

4{p} 5{q}

6{p} 7{q}
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EFq is computed as least fix point of the equation X = µ(q) ∪ (pre(X)), ie.
initially X = ∅. After 3 iteration, we obtain the following fixpoint:

0{q}

1{p} 2{q} 3{p}

4{p} 5{q}

6{p} 7{q}

2. Remark that AGAFp = ¬EFEG¬p. We start by computing JEG¬pK.
Remark that J¬pK = JqK. Thus JEG¬pK = JEGqK = {7}.
Next we compute JEF{7}K, as the least fixpoint of X = µ(q) ∪ (pre(X)).

X0 = ∅, pre(X0) = ∅, µ({7}) = {7}
X1 = {7}, pre({7}) = {7, 6}, µ({7}) = {7}
X2 = {7, 6}, pre({7, 6}) = {7, 6, 0}, µ({7}) = {7}
X3 = {7, 6, 0}, pre(X3) = X3

JEF{7}K = X3 = {0, 6, 7}
J¬EF{7}K = {J¬EF{7}K = {1, 2, 3, 4, 5}
Therefore JAGAFpK = {1, 2, 3, 4, 5}

Remark that AFAGp = ¬EGEF¬p. We start by computing JEF¬pK. Re-
mark that J¬pK = JqK. Thus JEF¬pK = JEFqK = {0, 1, 2, 4, 5, 6, 7}.
Next we compute JEG{0, 1, 2, 4, 5, 6, 7}K, as the greatest fixpoint of the equa-
tion X = µ({0, 1, 2, 4, 5, 6, 7}) ∩ pre(X)

X0 = [0, 7], pre(X0) = X0, µ({0, 1, 2, 4, 5, 6, 7}) = {0, 1, 2, 4, 5, 6, 7}, thus
X1 = {0, 1, 2, 4, 5, 6, 7}, pre(X1) = {0, 1, 4, 5, 6, 7}, therefore
X2 = {0, 1, 4, 5, 6, 7}, pre(X2) = {0, 1, 4, 5, 6, 7},
so JEG{0, 1, 2, 4, 5, 6, 7}K = X2 = {0, 1, 4, 5, 6, 7}. Therefore J¬EG{0, 1, 2, 4, 5, 6, 7}K =
{{0, 1, 4, 5, 6, 7} = {2, 3}.
JAFAGpK = {2, 3}

3. Remark the run 0, 6, 7, 7, . . .. Its trace is {q}{p}{q}ω which validates neither
FGp, nor GFp. Thus K 6|= FGp and K 6|= GFp.
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