Model Checking - Solution Sheet 8

Exercise 8.1: What is syntactic sugar ?

CTL operators are defined as $Q T$ where Q is A or E and T is any LTL modality $(\mathbf{X}, \mathbf{F}, \mathbf{G}, \mathcal{U}, \mathcal{W}, \mathcal{R})$. So many operators means a lot of cases to handle for inductively proving results on CTL.

$$
\begin{array}{ll}
A \mathbf{X} \varphi \equiv \neg E \mathbf{X} \neg \varphi & \varphi_{1} E \mathcal{W} \varphi_{2} \equiv E \mathbf{G} \varphi_{1} \vee\left(\varphi_{1} E \mathcal{U} \varphi_{2}\right) \\
E \mathbf{F} \varphi \equiv \operatorname{true} E \mathcal{U} \varphi & \varphi_{1} A \mathcal{W} \varphi_{2} \equiv \neg\left(\neg \varphi_{2} E \mathcal{U} \neg\left(\varphi_{1} \vee \varphi_{2}\right)\right) \\
\text { 1. } & A \mathbf{G} \varphi \equiv \neg E \mathbf{F} \neg \varphi \\
A \mathbf{F} \varphi \equiv \neg E \mathbf{G} \neg \varphi & \left.\varphi_{1} A \mathcal{U} \varphi_{2} \equiv A \mathbf{F} \varphi_{2} \wedge\left(\varphi_{1} A \mathcal{W} \varphi_{2}\right)\right) \\
& \varphi_{1} E \mathcal{R} \varphi_{2} \equiv \neg\left(\neg \varphi_{1} A \mathcal{U} \neg \varphi_{2}\right) \\
& \varphi_{1} A \mathcal{R} \varphi_{2} \equiv \neg\left(\neg \varphi_{1} E \mathcal{U} \neg \varphi_{2}\right)
\end{array}
$$

2. EX only provides a local information on the direct successors. $E \mathcal{U}$ only provides the existence of a branch which admits a treshold: the converse is the absence of a treshold on all branch. $E \mathbf{G}$ is thus necessary as it allows to state the absence of a treshold on a branch (or the presence of one on every branches).

Exercise 8.3: Fixpoint computations

1. We recall that $E \mathbf{G} q$ is computed as the greatest fixpoint of the equantion $X=\mu(q) \cap \operatorname{pre}(X)$. Thus we start by considering $X=[0,7]$.

After the first iteration, since $\operatorname{pre}([0,7])=[0,7]$, we have all states at which q holds. Only 7 then has a predecessor for which q holds. The next iteration does not modify the set X computed, therefore follows states that validate $E \mathbf{G} q$.

$E \mathbf{F} q$ is computed as least fix point of the equation $X=\mu(q) \cup(\operatorname{pre}(X))$, ie. initially $X=\emptyset$. After 3 iteration, we obtain the following fixpoint:

2. Remark that $A \mathbf{G} A \mathbf{F} p=\neg E \mathbf{F} E \mathbf{G} \neg p$. We start by computing $\llbracket E \mathbf{G} \neg p \rrbracket$. Remark that $\llbracket \neg p \rrbracket=\llbracket q \rrbracket$. Thus $\llbracket E \mathbf{G} \neg p \rrbracket=\llbracket E \mathbf{G} q \rrbracket=\{7\}$.
Next we compute $\llbracket E \mathbf{F}\{7\} \rrbracket$, as the least fixpoint of $X=\mu(q) \cup(\operatorname{pre}(X))$.
$X_{0}=\emptyset, \operatorname{pre}\left(X_{0}\right)=\emptyset, \mu(\{7\})=\{7\}$
$X_{1}=\{7\}, \operatorname{pre}(\{7\})=\{7,6\}, \mu(\{7\})=\{7\}$
$X_{2}=\{7,6\}, \operatorname{pre}(\{7,6\})=\{7,6,0\}, \mu(\{7\})=\{7\}$
$X_{3}=\{7,6,0\}, \operatorname{pre}\left(X_{3}\right)=X_{3}$
$\llbracket E \mathbf{F}\{7\} \rrbracket=X_{3}=\{0,6,7\}$
$\llbracket \neg E \mathbf{F}\{7\} \rrbracket=\subset \llbracket \neg E \mathbf{F}\{7\} \rrbracket=\{1,2,3,4,5\}$
Therefore $\llbracket A \mathbf{G} A \mathbf{F} p \rrbracket=\{1,2,3,4,5\}$

Remark that $A \mathbf{F} A \mathbf{G} p=\neg E \mathbf{G} E \mathbf{F} \neg p$. We start by computing $\llbracket E \mathbf{F} \neg p \rrbracket$. Remark that $\llbracket \neg p \rrbracket=\llbracket q \rrbracket$. Thus $\llbracket E \mathbf{F} \neg p \rrbracket=\llbracket E \mathbf{F} q \rrbracket=\{0,1,2,4,5,6,7\}$.
Next we compute $\llbracket E \mathbf{G}\{0,1,2,4,5,6,7\} \rrbracket$, as the greatest fixpoint of the equation $X=\mu(\{0,1,2,4,5,6,7\}) \cap \operatorname{pre}(X)$
$X_{0}=[0,7] \operatorname{pre}\left(X_{0}\right)=X_{0}, \mu(\{0,1,2,4,5,6,7\})=\{0,1,2,4,5,6,7\}$, thus
$X_{1}=\{0,1,2,4,5,6,7\}$, pre $\left(X_{1}\right)=\{0,1,4,5,6,7\}$, therefore
$X_{2}=\{0,1,4,5,6,7\}, \operatorname{pre}\left(X_{2}\right)=\{0,1,4,5,6,7\}$,
so $\llbracket E \mathbf{G}\{0,1,2,4,5,6,7\} \rrbracket=X_{2}=\{0,1,4,5,6,7\}$. Therefore $\llbracket \neg E \mathbf{G}\{0,1,2,4,5,6,7\} \rrbracket=$ $\complement\{0,1,4,5,6,7\}=\{2,3\}$.
$\llbracket A \mathbf{F} A \mathbf{G} p \rrbracket=\{2,3\}$
3. Remark the run $0,6,7,7, \ldots$. Its trace is $\{q\}\{p\}\{q\}^{\omega}$ which validates neither FG p, nor $\mathbf{G F} p$. Thus $K \not \vDash \mathbf{F G} p$ and $K \not \vDash \mathbf{G F} p$.

Ex 8.2

3)

