I7

J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth June 2015

Model Checking – Solution Sheet 8

Exercise 8.1: What is syntactic sugar ?

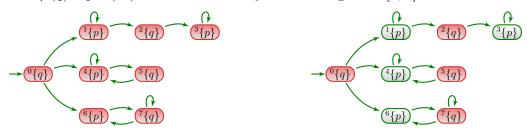
CTL operators are defined as QT where Q is A or E and T is any LTL modality $(\mathbf{X}, \mathbf{F}, \mathbf{G}, \mathcal{U}, \mathcal{W}, \mathcal{R})$. So many operators means a lot of cases to handle for inductively proving results on CTL.

	$A\mathbf{X}\varphi \equiv \neg E\mathbf{X}\neg\varphi$	$\varphi_1 E \mathcal{W} \varphi_2 \equiv E \mathbf{G} \varphi_1 \vee (\varphi_1 E \mathcal{U} \varphi_2)$
	$E\mathbf{F}\varphi \equiv \operatorname{true} E\mathcal{U}\varphi$	$\varphi_1 A \mathcal{W} \varphi_2 \equiv \neg (\neg \varphi_2 E \mathcal{U} \neg (\varphi_1 \lor \varphi_2))$
1.	$A\mathbf{G}\varphi \equiv \neg E\mathbf{F} \neg \varphi$	$\varphi_1 A \mathcal{U} \varphi_2 \equiv A \mathbf{F} \varphi_2 \wedge (\varphi_1 A \mathcal{W} \varphi_2))$
	$A\mathbf{F}\varphi \equiv \neg E\mathbf{G}\neg\varphi$	$\varphi_1 E \mathcal{R} \varphi_2 \equiv \neg (\neg \varphi_1 A \mathcal{U} \neg \varphi_2)$
		$\varphi_1 A \mathcal{R} \varphi_2 \equiv \neg(\neg \varphi_1 E \mathcal{U} \neg \varphi_2)$

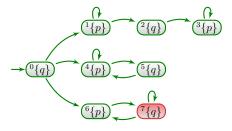
2. $E\mathbf{X}$ only provides a local information on the direct successors. $E\mathcal{U}$ only provides the existence of a branch which admits a treshold: the converse is the absence of a treshold on all branch. $E\mathbf{G}$ is thus necessary as it allows to state the absence of a treshold on a branch (or the presence of one on every branches).

Exercise 8.3: Fixpoint computations

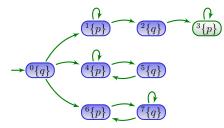
1. We recall that $E\mathbf{G}q$ is computed as the greatest fixpoint of the equantion $X = \mu(q) \cap pre(X)$. Thus we start by considering X = [0, 7].



After the first iteration, since pre([0,7]) = [0,7], we have all states at which q holds. Only 7 then has a predecessor for which q holds. The next iteration does not modify the set X computed, therefore follows states that validate $E\mathbf{G}q$.



 $E\mathbf{F}q$ is computed as least fix point of the equation $X = \mu(q) \cup (pre(X))$, ie. initially $X = \emptyset$. After 3 iteration, we obtain the following fixpoint:



2. Remark that $AGAFp = \neg EFEG\neg p$. We start by computing $[\![EG\neg p]\!]$. Remark that $[\![\neg p]\!] = [\![q]\!]$. Thus $[\![EG\neg p]\!] = [\![EGq]\!] = \{7\}$. Next we compute $[\![EF\{7\}]\!]$, as the least fixpoint of $X = \mu(q) \cup (pre(X))$. $X_0 = \emptyset, pre(X_0) = \emptyset, \mu(\{7\}) = \{7\}$ $X_1 = \{7\}, pre(\{7\}) = \{7, 6\}, \mu(\{7\}) = \{7\}$ $X_2 = \{7, 6\}, pre(\{7, 6\}) = \{7, 6, 0\}, \mu(\{7\}) = \{7\}$ $X_3 = \{7, 6, 0\}, pre(X_3) = X_3$ $[\![EF\{7\}]\!] = X_3 = \{0, 6, 7\}$ $[\![\neg EF\{7\}]\!] = C[\![\neg EF\{7\}]\!] = \{1, 2, 3, 4, 5\}$ Therefore $[\![AGAFp]\!] = \{1, 2, 3, 4, 5\}$

Remark that $A\mathbf{F}A\mathbf{G}p = \neg E\mathbf{G}E\mathbf{F}\neg p$. We start by computing $[\![E\mathbf{F}\neg p]\!]$. Remark that $[\![\neg p]\!] = [\![q]\!]$. Thus $[\![E\mathbf{F}\neg p]\!] = [\![E\mathbf{F}q]\!] = \{0, 1, 2, 4, 5, 6, 7\}$. Next we compute $[\![E\mathbf{G}\{0, 1, 2, 4, 5, 6, 7\}]\!]$, as the greatest fixpoint of the equation $X = \mu(\{0, 1, 2, 4, 5, 6, 7\}) \cap pre(X)$ $X_0 = [0, 7], pre(X_0) = X_0, \mu(\{0, 1, 2, 4, 5, 6, 7\}) = \{0, 1, 2, 4, 5, 6, 7\}, \text{ thus } X_1 = \{0, 1, 2, 4, 5, 6, 7\}, pre(X_1) = \{0, 1, 4, 5, 6, 7\}, \text{ therefore } X_2 = \{0, 1, 4, 5, 6, 7\}, pre(X_2) = \{0, 1, 4, 5, 6, 7\}, \text{ so } [\![E\mathbf{G}\{0, 1, 2, 4, 5, 6, 7\}]\!] = X_2 = \{0, 1, 4, 5, 6, 7\}.$ Therefore $[\![\neg E\mathbf{G}\{0, 1, 2, 4, 5, 6, 7\}]\!] = X_2 = \{0, 1, 4, 5, 6, 7\}.$ Therefore $[\![\neg E\mathbf{G}\{0, 1, 2, 4, 5, 6, 7\}]\!] = X_2 = \{0, 1, 4, 5, 6, 7\}.$ Therefore $[\![\neg E\mathbf{G}\{0, 1, 2, 4, 5, 6, 7\}]\!] = \{2, 3\}.$

3. Remark the run 0, 6, 7, 7, Its trace is $\{q\}\{q\}^{\omega}$ which validates neither **FG***p*, nor **GF***p*. Thus $K \not\models \mathbf{FG}p$ and $K \not\models \mathbf{GF}p$.

