I7

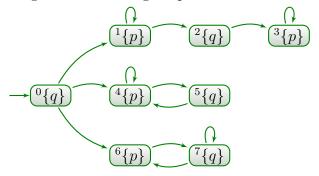
J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth 11.06.2015

Model Checking – Exercise sheet 8

Exercise 8.1: What is syntactic sugar ?

CTL operators are defined as QT where Q is A or E and T is any LTL modality $(\mathbf{X}, \mathbf{F}, \mathbf{G}, \mathcal{U}, \mathcal{W}, \mathcal{R})$. So many operators means a lot of cases to handle for inductively proving results on CTL.

- 1. Show that any operator can be written by means of the three operators $E\mathbf{X}, E\mathbf{G}, E\mathcal{U}$ (and also with the boolean connectives).
- 2. Informally, why is EG necessary?


Exercise 8.2: Composition of unary operators

We are interested in combinations of CTL operators:

- 1. Draw an implication graph between $EFEF\varphi$, $EGEG\varphi$, $AFAF\varphi$, $AGAG\varphi$.
- 2. Add to the graph $A\mathbf{F}E\mathbf{F}\varphi$ and $E\mathbf{F}A\mathbf{F}\varphi$.
- 3. Give an example of a tree satisfying only the weaker constraint for each strict implication, when $\varphi = p$.
- 4. Complete that graph with $AGAF\varphi$, $AFAG\varphi$, $AGEF\varphi$, $EGAF\varphi$, $AFEG\varphi$, $EFAG\varphi$, $EFEG\varphi$ and $EGEF\varphi$.

Exercise 8.3: Fixpoint computations

We give the following Kripke structure:

- 1. Compute $\llbracket E\mathbf{G}q \rrbracket$ and $\llbracket E\mathbf{F}q \rrbracket$.
- 2. Compute $\llbracket AGAFp \rrbracket$ and $\llbracket AFAGp \rrbracket$.
- 3. Does $K \models \mathbf{FG}p$? Does $K \models \mathbf{GF}p$?