


5, 6. We recall the 4 conditions:

• c0: red(s) = ∅ iff en(s) = ∅
This condition is clearly satisfied, as at least one action is kept.

• c1: Every path of K starting at a state s satisfies the following: no
action that depends on some action in red(s) occurs before an action
from red(s).
Reduced states contain exactly one action, which is independant with
all other, therefore the property c1 holds.

• c2: If red(s) 6= en(s) then all actions in red(s) are invisible.
Reduced states contain exactly one action, which is invisible.

• c3: For all cycles in K ′ the following holds: if a ∈ en(s) for some state
s in the cycle, then a ∈ red(s′) for some (possibly other) state s′ in the
cycle.
This condition holds for the concurrent execution of processes p1, p2,
p3. Provided there is at least one global assignment in any loop of any
process, this condition hold.

7. If such instructions are introduced, we have to take extra care with condition
c1 as such action would not be independant with the global assignments.
Therefore, if we modify the previous partial order reduction by replacing the
second bullet by “else if p2 may execute an instruction other than a global
variable assignment or a test, it does”.

If we allow (only) process p2 to test the value of the global variable (through
an action g==k), how to obtain a (non-trivial) partial order reduction ?

8. if we check the parity condition on variable l1 it is no more a partial order
reduction , because assignment to variable l1 are no more invisible actions
(and hence condition c1 is no more satisfied).

9. If we replace the first bullet by “if p1 may execute an instruction other than
an assignment (local or global), it does”, we obtain a partial order reduction.


