
Technische Universität München
I7
J. Esparza / A. Durand-Gasselin / D. Suwimonteerabuth

Summer Semester 2015

21.05.2015

Model Checking � Exercise sheet 6

Exercise 6.1

Lamport's bakery algorithm implements mutual exclusion by drawing an analogy between
customers waiting in a bakery and processes waiting to access a critical section. The idea
is to make sure that one customer can be served at a time by means of a numbering
machine. Upon entering the bakery, each customer receives a unique number, and waits
for the number's turn. The machine increases the number by one for each customer. There
is a global counter in the bakery which displays the number of customer that is currently
being served. When the customer leaves, the counter is increased by one to indicate the
next customer's turn.

Read the original paper for more details: http://research.microsoft.com/en-us/

um/people/lamport/pubs/bakery.pdf

1. Assuming that there are only two processes, write down a Promela model for the
algorithm.

2. Write down LTL formulae for the following properties:

(a) Both processes cannot enter the critical section at the same time.

(b) After a process receives a number, it will eventually enter the critical section.

3. Use Spin to verify your model against the above properties.

Exercise 6.2

Consider below an implementation of Insertion sort

1 #include <stdio.h>

2

3 #define N 10

4

5 int main() {

6 int a[N];

7

8 int i;

9 for (i = 1; i < N; i++) {

10 int x = a[i];

11 int j = i;

12 while (j > 0 && a[j - 1] > x) {

13 a[j] = a[j - 1];

14 j--;

15 }

16 a[j] = x;

17 }

18 }

1. Write down a Promela model for the above C function

1

http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf


2. Check your model against the following properties:

(a) The function always terminates.

(b) When the function terminates, the array is correctly sorted.

(c) After executing line 16, the array elements between a[0] and a[i] are sorted.

Exercise 6.3

Consider the following Promela model:

1 #define N 1

2

3 active proctype a() {

4 byte x;

5 do

6 :: (x < N) -> x++

7 :: else -> break

8 od;

9 assert(x == N);

10 }

11

12 active proctype b() {

13 byte y;

14 do

15 :: (y < N) -> y++

16 :: else -> break

17 od;

18 assert(y == N);

19 }

1. Draw a Kripke structure for the above model.

2. Write down the independence relation for the Kripke structure.

3. Use Spin to verify the above model with and without using partial order reduction.
How many states did Spin search for in each case? Explain the di�erence.

4. Increase N to 10, 100, 200, and redo the previous step. Observe the number of states.

5. Modify the model by

• making x a global variable; and

• appending acceptb: skip to the last line of b.

Verify the following property with Spin:

((x == 0) U (x == 1)) && <> (b@acceptb)

(a) Compare the number of states with and without using partial order reduction.

(b) Which actions are now visible?

2


